Advertisement

Journal of Molecular Modeling

, 21:290 | Cite as

Optimization of enrofloxacin-imprinted polymers by computer-aided design

  • Zhengqiang Dai
  • Junbo Liu
  • Shanshan Tang
  • Yan Wang
  • Yiming Wang
  • Ruifa Jin
Original Paper

Abstract

Recently, a series of computational and combinatorial approaches were employed to improve the efficiency of screening for optimal molecularly imprinted polymer (MIP) systems. In the present work, we investigated MIP systems based on enrofloxacin (ENRO) as the template molecule and either 2-vinyl-4,6-diamino-1,3,5-triazine (VDAT), 4-vinylpyridine (4-Vpy), acrylamide (AM), or trifluoromethacrylic acid (TFMAA) as the functional monomer. The optimized geometries of these systems, the optimal molar ratios of template to functional monomer, and the active sites in the systems were all identified using density functional theory (DFT) at the B3LYP/6-31G(d,p) level of theory. The imprinting mechanism was investigated by calculating the hydrogen nuclear magnetic resonance (1H NMR) spectra of the systems. The simulated results revealed that the MIP system corresponding to a 1:7 complex of TFMAA and ENRO contained the most H-bonds and presented the lowest (i.e., most negative) binding energy and the strongest interactions. MIPs of ENRO with the four functional monomers were prepared based on the optimal molar ratios of template to functional monomer determined in the simulations. Adsorption experiments suggested that TFMAA has the highest affinity (saturated adsorption 30.25 mg/g) among the four monomers for the template. Thus, we determined the optimal monomer and imprinting ratio for ENRO-imprinted MIPs and predicted their adsorption characteristics.

Graphical Abstract

The preparation and extraction processes of MIPs with ENRO as template, TFMAA as functional monomer, and EDMA as cross-linker

Keywords

Enrofloxacin Functional monomer Molecularly imprinted polymers Computer simulation Preparation 

Notes

Acknowledgments

The National Natural Science Foundation of China (no. 21302062), the Natural Science Foundation of Jilin Province (no. 201215180), and the Science and Technology Development Plan of Jilin Province (nos. 20130206099SF and 20150101018JC) are gratefully acknowledged.

Supplementary material

894_2015_2836_MOESM1_ESM.doc (4.9 mb)
ESM 1 (DOC 5010 kb)

References

  1. 1.
    Ziółkowski H, Jaroszewski JJ, Maślanka T, Grabowski T, Katolik K, Pawęska J, Siemianowska M, Jasiecka A, Markiewicz W, Spodniewska A (2014) Res Vet Sci 97:99–104CrossRefGoogle Scholar
  2. 2.
    Neves P, Berkane E, Gameiro P, Winterhalter M, de Castro B (2005) Biophys Chem 113:123–128CrossRefGoogle Scholar
  3. 3.
    Babaahmady E, Khosravi A (2011) Afr J Pharm Pharmcol 5:2042–2045CrossRefGoogle Scholar
  4. 4.
    Marchese S, Gentili A, Perret D (2005) TrAC Trend Anal Chem 24:704–733. doi: 10.1016/j.trac.2005.02.007
  5. 5.
    Piacham T, Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V (2013) Excli J 12:701–718Google Scholar
  6. 6.
    Ebrahimzadeh H, Molaei K, Asgharinezhad AA, Shekari N, Dehghani Z (2013) Anal Chim Acta 767:155–162CrossRefGoogle Scholar
  7. 7.
    Muhammad T, Cui L, Jide W, Piletska EV, Guerreiro AR, Piletsky SA (2012) Anal Chim Acta 709:98–104CrossRefGoogle Scholar
  8. 8.
    Moreno-Bondi MC, Benito-Peña ME, Urraca JL, Orellana G (2012) Top Curr Chem 325:111–164. doi: 10.1007/128_2010_94 CrossRefGoogle Scholar
  9. 9.
    Chianella I, Guerreiro A, Moczko E, Caygill JS, Piletska EV, De Vargas Sansalvador IMP, Whitcombe MJ, Piletsky SA (2013) Anal Chem 85:8462–8468CrossRefGoogle Scholar
  10. 10.
    Granado VLV, Gutiérrez-Capitán M, Fernández-Sánchez C, Gomes MTSR, Rudnitskaya A, Jimenez-Jorquer (2014) Anal Chim Acta 809:141–147CrossRefGoogle Scholar
  11. 11.
    Barkaline VV, Douhaya YV, Tsakalof A (2013) J Mol Model 19:359–369CrossRefGoogle Scholar
  12. 12.
    Liu LK, Cao Y, Ma PF, Qiu CX, Xu WZ, Liu H, Huang WH (2014) RSC Adv 4:605–616CrossRefGoogle Scholar
  13. 13.
    Cleland D, Olsson GD, Karlsson BCG, Nicholls IA, McCluskey A (2014) Org Biomol Chem 12:844–853CrossRefGoogle Scholar
  14. 14.
    Liu JB, Shi Y, Tang SS, Jin RF (2015) J Sep Sci 38:1065–1071CrossRefGoogle Scholar
  15. 15.
    Liu JB, Dai ZQ, Li B, Tang SS, Jin RF (2015) J Mol Model 20:2456–2465CrossRefGoogle Scholar
  16. 16.
    Caro E, Marcé RM, Cormack PAG, Sherringtonb DC, Borrulla F (2006) Anal Chim Acta 562:145–151CrossRefGoogle Scholar
  17. 17.
    Lu YK, Liu Y, Bian C, Lu GD, Qin XY (2009) CJI 11:26Google Scholar
  18. 18.
    Li XX, Bai LH, Wang H, Wang J, Huang YP, Liu ZS (2012) J Chromatogr A 1251:141–147CrossRefGoogle Scholar
  19. 19.
    Wang YL, Liu JB, Tang SS, Chang HB, Liang DD (2013) Chem J Chin U 34:2880–2886. doi: 10.7503/cjcu20130787 Google Scholar
  20. 20.
    Lv YK, Zhang Q, Song YL, Yan SL (2011) Asian J Chem 23:4037–4041Google Scholar
  21. 21.
    Slinchenko O, Rachkov A, Miyachi H, Ogiso M, Minoura N (2004) Biosens Bioelectron 20:1091–1097CrossRefGoogle Scholar
  22. 22.
    Ogiso M, Minoura N, Shinbo T, Shimizu T (2006) Biomaterials 27:4177–4182CrossRefGoogle Scholar
  23. 23.
    Hoshina K, Horiyama S, Matsunaga H, Haginaka J (2011) J Pharma Biomed 55:916–922CrossRefGoogle Scholar
  24. 24.
    Hiratsuka Y, Funaya N, Matsunaga H, Haginaka J (2013) J Pharma Biomed 75:180–185CrossRefGoogle Scholar
  25. 25.
    Reddy SM, Hawkins DM, Phan QT, Stevenson D (2013) Sensor Actuators B 176:190–197Google Scholar
  26. 26.
    EL-Sharif HF, Hawkins DM, Stevenson D, Reddy SM (2014) Phys Chem Chem Phys 16:15483–15489CrossRefGoogle Scholar
  27. 27.
    Subrahmanyam S, Guerreiro A, Poma A, Moczko E, Piletska E, Piletsky S (2013) Eur Polym J 49:100–105CrossRefGoogle Scholar
  28. 28.
    Lata K, Sharma R, Naik L, Rajput YS, Mann B (2015) Food Chem 184:176–182CrossRefGoogle Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Baroe V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09, revision A.2. Gaussian Inc., PittsburghGoogle Scholar
  30. 30.
    Sastri VS, Perumareddi JR (1997) Corrosion 53:617–622CrossRefGoogle Scholar
  31. 31.
    Parr RG, Szentpály LV, Liu SB (1999) J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  32. 32.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  33. 33.
    Houk KN (1975) Acc Chem Res 8:361–369CrossRefGoogle Scholar
  34. 34.
    Dong WG, Yan M, Liu Z, Wu SG, Li YM (2007) Sep Purif Technol 53:183–188CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of Resources and EnvironmentJilin Agricultural UniversityChangchunPeople’s Republic of China
  2. 2.Animal Science and Technology CollegeJilin Agricultural UniversityChangchunPeople’s Republic of China
  3. 3.College of Chemistry and Chemical EngineeringChifeng UniversityChifengPeople’s Republic of China

Personalised recommendations