Journal of Molecular Modeling

, 21:244 | Cite as

Critical test of some computational methods for prediction of NMR 1H and 13C chemical shifts

  • Eve Toomsalu
  • Peeter Burk
Original Paper


Performance of 18 DFT functionals (B1B95, B3LYP, B3PW91, B97D, BHandHLYP, BMK, CAM-B3LYP, HSEh1PBE, M06-L, mPW1PW91, O3LYP, OLYP, OPBE, PBE1PBE, tHCTHhyb, TPSSh, wB97xD, VSXC) in combinations with six basis sets (cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, aug-cc-pVTZ, IGLO-II, and IGLO-III) and three methods for calculating magnetic shieldings (GIAO, CSGT, IGAIM) was tested for predicting 1H and 13C chemical shifts for 25 organic compounds, for altogether 86 H and 88 C atoms. Proton shifts varied between 1.03 ppm to 12.00 ppm and carbon shifts between 7.87 ppm to 209.28 ppm. It was found that the best method for calculating 13C shifts is PBE1PBE/aug-cc-pVDZ with CSGT or IGAIM approaches (mae = 1.66 ppm), for 1H the best results were obtained with HSEh1PBE, mPW1PW91, PBE1PBE, CAM-B3LYP, and B3PW91 functionals with cc-pVTZ basis set and with CSGT or IGAIM approaches (mae = 0.28 ppm). We found that often larger basis sets do not give better results for chemical shifts. The best basis sets for calculating 1H and 13C chemical shifts were cc-pVTZ and aug-cc-pVDZ, respectively. CSGT and IGAIM NMR approaches can perform really well and are in most cases better than popular GIAO approach.

Graphical Abstract

Mean absolute errors for 1H and 13C chemical shifts and computational times of neutral toluene molecule with aug-cc-pVDZ basis set and CSGT approach


Chemical shifts CSGT DFT calculations NMR calculations GIAO IGAIM 



This work was supported by the Estonian Science Foundation (Grant No. 8809) and institutional research funding (IUT20-15) of the Estonian Ministry of Education and Research.

Supplementary material

894_2015_2787_MOESM1_ESM.pdf (4.7 mb)
ESM 1 (PDF 4819 kb)


  1. 1.
    Toomsalu E, Koppel IA, Burk P (2013) Critical test of some computational chemistry methods for prediction of gas-phase acidities and basicities. J Chem Theory Comput 9:3947–3958. doi: 10.1021/ct4003916 CrossRefGoogle Scholar
  2. 2.
    Bagno A, D'Amico F, Saielli G (2007) Computing the H-1 NMR spectrum of a bulk ionic liquid from snapshots of Car-Parrinello molecular dynamics simulations. Chemphysche 8:873–881. doi: 10.1002/cphc.200600725 CrossRefGoogle Scholar
  3. 3.
    Barone G, Duca D, Silvestri A, Gomez-Paloma L, Riccio R, Bifulco G (2002) Determination of the relative stereochemistry of flexible organic compounds by ab initio methods: conformational analysis and Boltzmann-averaged GIAO C-13 NMR chemical shifts. Chem Eur J 8:3240–3245. doi: 10.1002/1521-3765(20020715)8:143.0.CO;2-G
  4. 4.
    Barone G, Gomez-Paloma L, Duca D, Silvestri A, Riccio R, Bifulco G (2002) Structure validation of natural products by quantum-mechanical GIAO calculations of C-13 NMR chemical shifts. Chem Eur J 8:3233–3239. doi: 10.1002/1521-3765(20020715)8:14<3233::AID-CHEM3233>3.0.CO;2-0 CrossRefGoogle Scholar
  5. 5.
    Claramunt RM, Lopez C, Garcia MA, Denisov GS, Alkorta I, Elguero J (2003) Protonation and phase effects on the NMR chemical shifts of imidazoles and pyrazoles: experimental results and GIAO calculations. New J Chem 27:734–742. doi: 10.1039/B210251J CrossRefGoogle Scholar
  6. 6.
    Yang J, Huang SX, Zhao QS (2008) Structure revision of Hassananes with Use of Quantum Mechanical (13)C NMR Chemical Shifts and UV–vis Absorption Spectra. J Phys Chem A 112:12132–12139. doi: 10.1021/jp8072415
  7. 7.
    Juribasic M, Tusek-Bozic L (2009) Spectroscopic and DFT study of 3-quinolyl-alpha-aminophosphonates. J Mol Struct 924:66–72. doi: 10.1016/j.molstruc.2008.11.007 CrossRefGoogle Scholar
  8. 8.
    Bugaj M, Baran PA, Bernatowicz P, Brozek P, Kamienska-Trela K, Krowczynski A, Kamienski B (2009) Structural studies on aryl-substituted enaminoketones and their thio analogues. Part I. Analysis of high-resolution H-1, C-13 NMR and C-13 CP MAS spectra combined with GIAO-DFT calculations. Magn Reson Chem 47:830–842. doi: 10.1002/mrc.2477 CrossRefGoogle Scholar
  9. 9.
    Barczynski P, Dega-Szafran Z, Katrusiak A, Perdoch W, Szafran M (2009) DABCO mono-betaine hydrate studied by X-ray diffraction, DFT calculations and spectroscopic methods. J Mol Struct 933:46–52. doi: 10.1016/j.molstruc.2009.05.050 CrossRefGoogle Scholar
  10. 10.
    Lawson MN, Blanda MT, Staggs SJ, Sederholm LN, Easter DC (2009) Computational studies of the cone and 1,2,3 alternate calix 6 arene bis-crown-4 isomers: structures, NMR shifts, atomic charges, and steric compression. J Phys Org Chem 22:1212–1224. doi: 10.1002/poc.1621 CrossRefGoogle Scholar
  11. 11.
    Pohl R, Dracinsky M, Slavetinska L, Budesinsky M (2011) The observed and calculated H-1 and C-13 chemical shifts of tertiary amines and their N-oxides. Magn Reson Chem 49:320–327. doi: 10.1002/mrc.2750 CrossRefGoogle Scholar
  12. 12.
    Lodewyk MW, Tantillo DJ (2011) Prediction of the structure of nobilisitine A using computed NMR chemical shifts. J Nat Prod 74:1339–1343. doi: 10.1021/np2000446
  13. 13.
    Yeh PL, Tai CK, Shih TL, Hsiao HL, Wang BC (2012) Conformational analysis of a seven-membered ring azasugar, (3R,4R,6S)-trihydroxyazepane: Comparison of GIAO calculation and experimental NMR spectra on C-13 chemical shifts. J Mol Struct 1018:64–71. doi: 10.1016/j.molstruc.2011.08.054 CrossRefGoogle Scholar
  14. 14.
    Kaminsky J, Budesinsky M, Taubert S, Bour P, Straka M (2013) Fullerene C-70 characterization by C-13 NMR and the importance of the solvent and dynamics in spectral simulations. Phys Chem Chem Phys 15:9223–9230. doi: 10.1039/c3cp50657f CrossRefGoogle Scholar
  15. 15.
    Kupka T, Stachow M, Chelmecka E, Pasterny K, Stobinska M, Stobinski L, Kaminsky J (2013) Efficient modeling of NMR parameters in carbon nanosystems. J Chem Theory Comput 9:4275–4286. doi: 10.1021/ct4002812
  16. 16.
    Szatmari I, Heydenreich M, Koch A, Fueloep F, Kleinpeter E (2013) Unexpected isomerization of new naphth 1,3 oxazino 2,3-a isoquinolines in solution, studied by dynamic NMR and supported by theoretical DFT computations. Tetrahedron 69:7455–7465. doi: 10.1016/j.tet.2013.06.094 CrossRefGoogle Scholar
  17. 17.
    Santos-Carballal D, Suardiaz R, Crespo-Otero R, Gonzalez L, Perez CS (2013) Conformational and NMR study of some furan derivatives by DFT methods. J Mol Model 19:4591–4601. doi: 10.1007/s00894-013-1964-z CrossRefGoogle Scholar
  18. 18.
    Dokalik A, Kalchhauser H, Mikenda W, Schweng G (1999) NMR spectra of nitrogen-containing compounds. Correlations between experimental and GIAO calculated data. Magn Reson Chem 37:895–902. doi: 10.1002/(SICI)1097-458X(199912)37:123.0.CO;2-7 CrossRefGoogle Scholar
  19. 19.
    Giesen DJ, Zumbulyadis N (2002) A hybrid quantum mechanical and empirical model for the prediction of isotropic C-13 shielding constants of organic molecules. Phys Chem Chem Phys 4:5498–5507. doi: 10.1039/B206245C CrossRefGoogle Scholar
  20. 20.
    Magyarfalvi G, Pulay P (2003) Assessment of density functional methods for nuclear magnetic resonance shielding calculations. J Chem Phys 119:1350–1357. doi: 10.1063/1.1581252 CrossRefGoogle Scholar
  21. 21.
    Allen MJ, Keal TW, Tozer DJ (2003) Improved NMR chemical shifts in density functional theory. J Chem Phys Lett 380:70–77. doi: 10.1016/j.cplett.2003.08.101 CrossRefGoogle Scholar
  22. 22.
    Bagno A, Rastrelli F, Saielli G (2003) Predicting C-13 NMR spectra by DFT calculations. J Phys Chem A 107:9964–9973. doi: 10.1021/jp0353284 CrossRefGoogle Scholar
  23. 23.
    Keal TW, Tozer DJ, Helgaker T (2004) GIAO shielding constants and indirect spin-spin coupling constants: performance of density functional methods. Chem Phys Lett 391:374–379. doi: 10.1016/j.cplett.2004.04.108 CrossRefGoogle Scholar
  24. 24.
    Dybiec K, Gryff-Keller A (2009) Remarks on GIAO-DFT predictions of C-13 chemical shifts. Magn Reson Chem 47:63–66. doi: 10.1039/A902184A CrossRefGoogle Scholar
  25. 25.
    Kupka T (2009) Prediction of water's isotropic nuclear shieldings and indirect nuclear spin-spin coupling constants (SSCCs) using correlation-consistent and polarization-consistent basis sets in the Kohn-Sham basis set limit. Magn Reson Chem 47:210–221. doi: 10.1002/mrc.2369 CrossRefGoogle Scholar
  26. 26.
    Kupka T, Nieradka M, Stachow M, Pluta T, Nowak P, Kjaer H, Kongsted J, Kaminsky J (2012) Basis set convergence of indirect spin-spin coupling constants in the kohn-sham limit for several small molecules. J Phys Chem A 116:3728–3738. doi: 10.1021/jp212588h
  27. 27.
    Zhang Y, Wu A, Xu X, Yan Y (2007) Geometric dependence of the B3LYP-predicted magnetic shieldings and chemical shifts. J Phys Chem A 111:9431–9437. doi: 10.1021/jp0740503
  28. 28.
    Cimino P, Gomez-Paloma L, Duca D, Riccio R, Bifulco G (2004) Comparison of different theory models and basis sets in the calculation of C-13 NMR chemical shifts of natural products. Magn Reson Chem 42:S26–S33. doi: 10.1002/mrc.1410 CrossRefGoogle Scholar
  29. 29.
    Ditchfield R (1972) Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility. J Chem Phys 56:5688–5691. doi: 10.1063/1.1677088 CrossRefGoogle Scholar
  30. 30.
    Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge- independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260. doi: 10.1021/ja00179a005 CrossRefGoogle Scholar
  31. 31.
    Keith TA, Bader RFW (1993) Calculation of the magnetic response properties using a continuous set of gauge transformations. Chem Phys Lett 210:223–231. doi: 10.1016/0009-2614(93)89127-4 CrossRefGoogle Scholar
  32. 32.
    Keith TA, Bader RFW (1992) Calculation of magnetic response properties using atoms in molecules. Chem Phys Lett 194:1–8. doi: 10.1016/0009-2614(92)85733-Q CrossRefGoogle Scholar
  33. 33.
    Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104:5497–5509. doi: 10.1063/1.471789 CrossRefGoogle Scholar
  34. 34.
    Jain R, Bally T, Rablen PR (2009) Calculating accurate proton chemical shifts of organic molecules with density functional methods and modest basis sets. J Org Chem 74:4017–4023. doi: 10.1021/jo900482q CrossRefGoogle Scholar
  35. 35.
    Tormena CF, da Silva GVJ (2004) Chemical shifts calculations on aromatic systems: a comparison of models and basis sets. J Chem Phys Lett 398:466–470. doi: 10.1016/j.cplett.2004.09.103 CrossRefGoogle Scholar
  36. 36.
    Wang B, Fleischer U, Hinton JF, Pulay P (2001) Accurate prediction of proton chemical shifts. I. Substituted aromatic hydrocarbons. J Comput Chem 22:1887–1895. doi: 10.1002/jcc.1139 CrossRefGoogle Scholar
  37. 37.
    Wu A, Zhang Y, Xu X, Yan Y (2007) Systematic studies on the computation of nuclear magnetic resonance shielding constants and chemical shifts: the density functional models. J Comput Chem 28:2431–2442. doi: 10.1002/jcc.20641
  38. 38.
    Flaig D, Maurer M, Hanni M, Braunger K, Kick L, Thubauville M, Ochsenfeld C (2014) Benchmarking hydrogen and carbon NMR chemical shifts at HF, DFT, and MP2 levels. J Chem Theory Comput 10:572–578. doi: 10.1021/ct400780f
  39. 39.
    Auer AA, Gauss J, Stanton JF (2003) Quantitative prediction of gas-phase C-13 nuclear magnetic shielding constants. J Chem Phys 118(23):10407–10417. doi: 10.1063/1.1574314 CrossRefGoogle Scholar
  40. 40.
    Kupka T, Stachow M, Nieradka M, Kaminsky J, Pluta T (2010) Convergence of nuclear magnetic shieldings in the kohn-sham limit for several small molecules. J Chem Theory Comput 6:1580–1589. doi: 10.1021/ct100109j CrossRefGoogle Scholar
  41. 41.
    Armangue L, Sola M, Swart M (2011) Nuclear shieldings with the SSB-D functional. J Phys Chem A 115:1250–1256. doi: 10.1021/jp108327c
  42. 42.
    Teale AM, Lutnaes OB, Helgaker T, Tozer DJ, Gauss J (2013) Benchmarking density-functional theory calculations of NMR shielding constants and spin rotation constants using accurate coupled-cluster calculations. J Chem Phys 138:024111. doi: 10.1063/1.4773016 CrossRefGoogle Scholar
  43. 43.
    Aliev AE, Courtier-Murias D, Zhou S (2009) Scaling factors for carbon NMR chemical shifts obtained from DFF B3LYP calculations. J Mol Struct: Theochem 893:1–5. doi: 10.1016/j.theochem.2008.09.021 CrossRefGoogle Scholar
  44. 44.
    Mothana B, Ban FQ, Boyd RJ (2005) Validation of a computational scheme to study N-15 and C-13 nuclear shielding constants. J Chem Phys Lett 401:7–12. doi: 10.1016/j.cplett.2004.10.145 CrossRefGoogle Scholar
  45. 45.
    Pierens GK (2014) H-1 and C-13 NMR scaling factors for the calculation of chemical shifts in commonly used solvents using density functional theory. J Comput Chem 35:1388–1394. doi: 10.1002/jcc.23638 CrossRefGoogle Scholar
  46. 46.
    Sarotti AM, Pellegrinet SC (2009) A Multi-standard approach for GIAO (13)C NMR calculations. J Org Chem 74:7254–7260. doi: 10.1021/jo901234h CrossRefGoogle Scholar
  47. 47.
    Demissie TB, Repisky M, Komorovsky S, Isaksson J, Svendsen JS, Dodziuk H, Ruud K (2013) Four-component relativistic chemical shift calculations of halogenated organic compounds. J Phys Org Chem 26:679–687. doi: 10.1002/poc.3157 CrossRefGoogle Scholar
  48. 48.
    d'Antuono P, Botek E, Champagne B, Spassova M, Denkova P (2006) Theoretical investigation on H-1 and C-13 NMR chemical shifts of small alkanes and chloroalkanes. J Chem Phys 125:144309. doi: 10.0163/1.2353830 CrossRefGoogle Scholar
  49. 49.
    Zhao Y, Truhlar DG (2008) Improved description of nuclear magnetic resonance chemical shielding constants using the M06-L meta-generalized-gradient-approximation density functional. J Phys Chem A 112:6794–6799. doi: 10.1021/jp804583d CrossRefGoogle Scholar
  50. 50.
    Benzi C, Crescenzi O, Pavone M, Barone V (2004) Reliable NMR chemical shifts for molecules in solution by methods rooted in density functional theory. Magn Reson Chem 42:S57–S67. doi: 10.1002/mrc.1447 CrossRefGoogle Scholar
  51. 51.
    Zhang Y, Xu X, Yan Y (2008) Systematic investigation on the geometric dependence of the calculated nuclear magnetic shielding constants. J Comput Chem 29:1798–1807. doi: 10.1002/jcc.20941 CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Wu AN, Xu X, Yan YJ (2006) OPBE: A promising density functional for the calculation of nuclear shielding constants. Chem Phys Lett 421:383–388. doi: 10.1016/j.cplett.2006.01.095 CrossRefGoogle Scholar
  53. 53.
    Wiitala KW, Hoye TR, Cramer CJ (2006) Hybrid density functional methods empirically optimised for the computation of C-13 and H-1 chemical shifts in chloroform solution. J Chem Theory Comput 2:1085–1092. doi: 10.1021/ct6001016 CrossRefGoogle Scholar
  54. 54.
    Jensen F (2008) Basis set convergence of nuclear magnetic shielding constants calculated by density functional methods. J Chem Theory Comput 4:719–727. doi: 10.1021/ct800013z CrossRefGoogle Scholar
  55. 55.
    Konstantinov IA, Broadbelt LJ (2011) Regression formulas for density functional theory calculated H-1 and C-13 NMR chemical shifts in toluene-d(8). J Phys Chem A 115:12364–12372. doi: 10.1021/jp2060975 CrossRefGoogle Scholar
  56. 56.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Inc, WallingfordGoogle Scholar
  57. 57.
    Becke AD (1996) Density-functional thermochemistry. 4. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys 104:1040–1046. doi: 10.1063/1.470829
  58. 58.
    Becke AD (1993) Density- functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. doi: 10.1063/1.464913 CrossRefGoogle Scholar
  59. 59.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation- energy. Phys Rev B 45:13244–13249. doi: 10.1103/PhysRevB.45.13244 CrossRefGoogle Scholar
  60. 60.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. doi: 10.1002/jcc.20495 CrossRefGoogle Scholar
  61. 61.
    Becke AD (1993) A new mixing of the Hartree- Fock and local density-functional theories. J Chem Phys 98:1372–1377. doi: 10.1063/1.464304 CrossRefGoogle Scholar
  62. 62.
    Boese AD, Martin JML (2004) Development of density functionals for thermochemical kinetics. J Chem Phys 121:3405–3416. doi: 10.1021/jp049908s CrossRefGoogle Scholar
  63. 63.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. doi: 10.1016/j.cplett.2004.06.011 CrossRefGoogle Scholar
  64. 64.
    Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215. doi: 10.1063/1.2204597 CrossRefGoogle Scholar
  65. 65.
    Heyd J, Scuseria GE (2004) Assessment and validation of a screened Coulomb hybrid density functional. J Chem Phys 120:7274–7280. doi: 10.1063/1.1668634 CrossRefGoogle Scholar
  66. 66.
    Izmaylov AF, Scuseria GE, Frisch MJ (2006) Efficient evaluation of short-range Hartree-Fock exchange in large molecules and periodic systems. J Chem Phys 125:104103. doi: 10.1063/1.2347713 CrossRefGoogle Scholar
  67. 67.
    Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125:224106. doi: 10.1063/1.2404663 CrossRefGoogle Scholar
  68. 68.
    Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101. doi: 10.1063/1.2370993 CrossRefGoogle Scholar
  69. 69.
    Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664–675. doi: 10.1063/1.475428
  70. 70.
    Adamo C, Barone V (1997) Toward reliable adiabatic connection models free from adjustable parameters. Chem Phys Lett 274:242–250. doi: 10.1016/S0009-2614(97)00651-9 CrossRefGoogle Scholar
  71. 71.
    Handy NC, Cohen AJ (2001) Left-right correlation energy. J Mol Phys 99:403–412. doi: 10.1080/00268970010018431 CrossRefGoogle Scholar
  72. 72.
    Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi: 10.1103/PhysRevB.37.785
  73. 73.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation-energy density functionals of Becke and Lee, Yang and Parr. Chem Phy Lett 157:200–206. doi: 10.1016/0009-2614(89)87234-3 CrossRefGoogle Scholar
  74. 74.
    Hoe WM, Cohen AJ, Handy NC (2001) Assessment of a new local exchange functional OPTX. Chem Phys Lett 341:319–328. doi: 10.1016/S0009-2614(01)00581-4 CrossRefGoogle Scholar
  75. 75.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi: 10.1103/PhysRevLett.78.1396 CrossRefGoogle Scholar
  76. 76.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 mode. J Chem Phys 110:6158–6170. doi: 10.1063/1.478522
  77. 77.
    Boese AD, Handy NC (2002) New exchange-correlation density functionals: the role of the kinetic-energy density. J Chem Phys 116:9559–9569. doi: 10.1063/1.1476309
  78. 78.
    Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401. doi: 10.1103/PhysRevLett.91.146401
  79. 79.
    Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. doi: 10.1039/B810189B CrossRefGoogle Scholar
  80. 80.
    Chai JD, Head-Gordon M (2008) Systematic optimisation of long-range corrected hybrid density functionals. J Chem Phys 128:084106. doi: 10.1063/1.2834918 CrossRefGoogle Scholar
  81. 81.
    Van Voorhis T, Scuseria GE (1998) A novel form for the exchange-correlation energy functional. J Chem Phys 109:400–410. doi: 10.1063/1.476577 CrossRefGoogle Scholar
  82. 82.
    Dunning TH (1989) Gaussian- basis sets for use in correlated molecular calculations. 1. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023. doi: 10.1063/1.470645 CrossRefGoogle Scholar
  83. 83.
    Kutzelnigg W, Fleischer U, Schindler M (1990) The IGLO-method: ab initio calculation and interpretation of NMR chemical shifts and magnetic susceptibilities. doi: 10.1007/978-3-642-75932-1_3
  84. 84.
    EMSL Basis Set Library (accessed June 10, 2014)
  85. 85.
    Spectral Database for Organic Compounds (accessed February 20, 2014)
  86. 86.
    Perdew JP, Schmidt K (2001) Jacob's ladder of density functional approximations for the exchange-correlation energy. International Conference on Density Functional Theory and its Applications to Materials, Antwerp, pp 1–20Google Scholar
  87. 87.
    Autschbach J (2012) Perspective: relativistic effects. J Chem Phys 136:150902. doi: 10.1063/1.3702628
  88. 88.
    Autschbach J, Zheng S (2009) Relativistic computations of NMR parameters from first principles: theory and applications. Annu Rep NMR Spectrosc 67:1–95Google Scholar
  89. 89.
    Wolf S, Zielger T (1998) Calculation of DFT-GIAO NMR shifts with the inclusion of spin-orbitcoupling. J Chem Phys 109:895–905. doi: 10.1063/1.476630
  90. 90.
    Lodewyk MW, Siebert MR, Tantillo DJ (2012) Computational prediction of H-1 and C-13 chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem Rev 112:1839–1862. doi: 10.1021/cr200106v CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of TartuTartuEstonia

Personalised recommendations