Advertisement

Electronic and optical properties of N-doped Bi2O3 polymorphs for visible light-induced photocatalysis

  • Fang Wang
  • Kun Cao
  • Yi Wu
  • Greta R. Patzke
  • Ying ZhouEmail author
Original Paper

Abstract

The effect of N doping on the crystal structure, electronic, and optical properties of α-Bi2O3 and β-Bi2O3 has been studied in detail based with first principle calculations. The crystallographic features of Bi2O3 polymorphs are not substantially changed through N doping, whereas charge transfer from Bi to N results in large variations of charge density distribution. N-doped β-Bi2O3 exhibits improved thermal stability due to stronger Bi-N covalent bonds and lower defect formation energy, and the convenient preparative access agrees well with experimental observations. Calculated band structures and optical properties indicate that N doping does not induce major band gap narrowing, but leads to the presence of isolated bands above the VBM induced by N 2p for both α-Bi2O3 and β-Bi2O3 which induce large red-shifts of their visible light absoprtion properties. These isolated bands act as acceptor levels and facilitate electron transition under visible light illumination through introduction of steps between VB and CB, thereby rendering the materials quite promising for photocatalytic applications.

Keywords

First-principle calculations N-doped Bi2O3 Photocatalytsts 

Notes

Acknowledgments

We thank the financial support by the National Natural Science Foundation of China (51102245), Sichuan Youth Science and Technology Foundation (2013JQ0034), the Innovative Research Team of Sichuan Provincial Education Department (2012XJZT002), Scientific Research Staring Project of SWPU (2014QHZ020, 2014PYZ012), and Sichuan Provincial Colleges’ Sate Key Laboratory of Oil and Gas Reservoir Project (x151514kcl17)

References

  1. 1.
    Chen XB, Mao SS (2007) Chem Rev 107:2891–2959CrossRefGoogle Scholar
  2. 2.
    Linsebigler AL, Lu G, Yates JT Jr (1995) Chem Rev 95:735–758CrossRefGoogle Scholar
  3. 3.
    Wang F, Cao K, Zhang Q, Gong XD, Zhou Y (2014) J Mol Model 20:2506Google Scholar
  4. 4.
    Leontie L, Caraman M, Delibas M, Rusu GI (2001) Mater Res Bull 36:1629–1637CrossRefGoogle Scholar
  5. 5.
    Muruganandham M, Amutha R, Lee GJ, Hsieh SH, Wu JJ, Sillanpää MJ (2012) Phys Chem C 116:12906–12915CrossRefGoogle Scholar
  6. 6.
    Huang Q, Zhang S, Cai C, Zhou B (2011) Mater Lett 65988–65990Google Scholar
  7. 7.
    Cheng H, Huang B, Lu J, Wang Z, Xu B, Qin X, Zhang X, Dai Y (2010) Phys Chem Chem Phys 12:15468–15475CrossRefGoogle Scholar
  8. 8.
    Romanov AN, Fattakhova ZT, Rufov YN, Shashkin DP (2001) Kinet Catal 42:275–280CrossRefGoogle Scholar
  9. 9.
    Xia N, Yuan D, Zhou T, Chen J, Mo S, Liu Y (2011) Mater Res Bull 46:687–691CrossRefGoogle Scholar
  10. 10.
    Dai G, Liu S, Liang Y (2014) J Alloys Compd 608:44–48Google Scholar
  11. 11.
    Lu YG, Yang YC, Xiang YZ, Liu SY (2012) J Inorg Mater 27:643–648CrossRefGoogle Scholar
  12. 12.
    Jun S, Yuan G, Hao WC, Jing X, Ju HX, Wang L, Feng HF, Wang TM (2014) Chin Phys B 23:038103CrossRefGoogle Scholar
  13. 13.
    Li M, Li F, Yin PG (2014) Chem Phys Lett 601:92–97CrossRefGoogle Scholar
  14. 14.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269–271CrossRefGoogle Scholar
  15. 15.
    Batzill M, Morales EH, Diebold U (2006) Phys Rev Lett 96:026103CrossRefGoogle Scholar
  16. 16.
    Valentin CD, Pacchioni G, Selloni A (2004) Phys Rev B 70085116Google Scholar
  17. 17.
    Serpone N (2006) J Phys Chem B 110:24287–24293CrossRefGoogle Scholar
  18. 18.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244CrossRefGoogle Scholar
  19. 19.
    Vanderbilt D (1990) Phys Rev B 41:7892CrossRefGoogle Scholar
  20. 20.
    Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys: Condensed Mat 14:2717Google Scholar
  21. 21.
    Fischer TH, Almlof J (1992) J Phys Chem 96:9768–9774CrossRefGoogle Scholar
  22. 22.
    Dong H, Chen G, Sun JX, Li CM, Yu YG, Chen DH (2013) Appl Catal B: Environmental 134:46–54CrossRefGoogle Scholar
  23. 23.
    Lai KR, Zhu YT, Lu JB, Dai Y, Huang BB (2013) Comp Mater Sci 67:88–92CrossRefGoogle Scholar
  24. 24.
    Wang J, Tafen DN, Lewis JP, Hong ZL, Manivannan A, Zhi MJ, Li M, Wu NQ (2009) J Am Chem Soc 131:12290–12297CrossRefGoogle Scholar
  25. 25.
    Han XP, Shao GS (2011) J Phys Chem C 115:8274–8282CrossRefGoogle Scholar
  26. 26.
    Yu JG, Zhou P, Li Q (2013) Phys Chem Chem Phys 151:2040–12047Google Scholar
  27. 27.
    Harwig HA (1978) Allg Chem 444:167–177CrossRefGoogle Scholar
  28. 28.
    Wu GH, Zheng SK, Wu PF, Su J, Liu L (2013) Solid State Commun 163:7–10CrossRefGoogle Scholar
  29. 29.
    Yang KS, Dai Y, Huang BB (2007) J Phys Chem C 111:12086–12090CrossRefGoogle Scholar
  30. 30.
    Dashora A, Patel N, Kothari DC, Ahuja BL, Miotello A (2014) Sol Energ Mat Sol C 125:120–126CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fang Wang
    • 1
    • 2
  • Kun Cao
    • 2
  • Yi Wu
    • 2
  • Greta R. Patzke
    • 3
  • Ying Zhou
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum UniversityChengduChina
  2. 2.The Center of New Energy Materials and Technology, School of Materials Science and EngineeringSouthwest Petroleum UniversityChengduChina
  3. 3.Department of ChemistryUniversity of ZurichZurichSwitzerland

Personalised recommendations