Binuclear cyclopentadienylrhenium hydride chemistry: terminal versus bridging hydride and cyclopentadienyl ligands

  • Xiaozhen Gao
  • Nan Li
  • R. Bruce King
  • Henry F. SchaeferIII
Original Paper


Theoretical studies predict the lowest energy structures of the binuclear cyclopentadienylrhenium hydrides Cp2Re2H n (Cp = η5–C5H5; n = 4, 6, 8) to have a central doubly bridged Re2(μ–H)2 unit with terminal η5–Cp rings and the remaining hydrides as terminal ligands. However, the lowest energy Cp2Re2H2 structure by more than 12 kcal mol−1 has one terminal η5-Cp ring, a bridging η32–Cp ring, and two terminal hydride ligands bonded to the same Re atom. The lowest energy hydride-free Cp2Re2 structure is a perpendicular structure with two bridging η32–Cp rings. The previously predicted bent singlet Cp2Re2 structure with terminal η5-Cp rings and a formal Re–Re sextuple bond lies ∼37 kcal mol−1 above this lowest energy (η32–Cp)2Re2 structure. The thermochemistry of the CpReH n and Cp2Re2H n systems is consistent with the reported synthesis of the permethylated derivatives Cp*ReH6 and Cp*2Re2H6 (Cp* = η5–Me5C5) as very stable compounds. Additionally, natural bond orbital analysis, atoms-in-molecules and overlap population density-of-state in AOMIX were applied to present the existence of rhenium–rhenium multiple bonds.

Graphical Abstract

The lowest energy Cp2Re2H n (Cp = η5–C5H5; n = 4, 6, 8) structures have a central doubly bridged Re2(μ–H)2 unit. However, the lowest Cp2Re2H2 structure by more than 12 kcal mol−1 has one terminal η5–Cp ring, a bridging η32–Cp ring, and two terminal hydride ligands bonded to the same Re atom. The lowest energy hydride-free Cp2Re2 structure is a perpendicular structure with two bridging η32–Cp rings


Binuclear rhenium hydrides Thermochemistry Density functional theory 



We are indebted to the Excellent Young Scholars Research Fund of Beijing Institute of Technology (2012YG0202 and 2014CX04024), Beijing Natural Science Foundation (2132033, and 2132035), Beijing Higher Education Young Elite Teacher Project(YETP1177) and the National Natural Science Foundation of China (61440020) and the U.S. National Science Foundation (Grants CHE-1057466 and CHE-1054286) for support of this research.

Supplementary material

894_2014_2546_MOESM1_ESM.pdf (334 kb)
ESM 1 (PDF 334 kb)


  1. 1.
    Lundell GEF, Knowles HB (1937) J Res Natl Bur Std 18:629–637CrossRefGoogle Scholar
  2. 2.
    Abrahams AC, Ginsberg AP, Knox K (1964) Inorg Chem 3:558–567CrossRefGoogle Scholar
  3. 3.
    Green MLH, Pratt L, Wilkinson G (1958) J Chem Soc 3916–3922Google Scholar
  4. 4.
    Herrmann WA, Okuda J (1986) Angew Chem Int Ed 25:1092–1093CrossRefGoogle Scholar
  5. 5.
    Herrmann WA, Theiler HG, Kiprof P, Tremmel J, Blom R (1990) J Organometal Chem 395:69–84CrossRefGoogle Scholar
  6. 6.
    Herrmann WA, Theiler HG, Eberhardt H, Paul K (1989) J Organometal Chem 367:291–311CrossRefGoogle Scholar
  7. 7.
    Xu B, Li QS, Xie YM, King RB, Schaefer HF (2010) J Chem Theory Comput 6:735–746Google Scholar
  8. 8.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian, Inc, WallingfordGoogle Scholar
  9. 9.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  10. 10.
    Perdew JP (1986) Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  11. 11.
    Adamo C, Barone V (1998) J Chem Phys 108:664–675CrossRefGoogle Scholar
  12. 12.
    Zhao Y, Pu J, Lynch BJ, Truhlar DG (2004) Phys Chem Chem Phys 6:673–676CrossRefGoogle Scholar
  13. 13.
    Perdew JP (1991) In: Ziesche P, Esching H (eds) Electronic structure of solids. Akademic, Berlin, p 11Google Scholar
  14. 14.
    Zhao S, Wang W, Li Z, Liu ZP, Fan KN, Xie YM, Schaefer HF (2006) J Chem Phys 124:184102CrossRefGoogle Scholar
  15. 15.
    Feng X, Gu J, Xie YM, King RB, Schaefer HF (2007) J Chem Theory Comput 3:1580–1587CrossRefGoogle Scholar
  16. 16.
    Andrae D, Häuβermann U, Dolg M, Stoll H, Preuβ H (1990) Theor Chim Acta 77:123–141Google Scholar
  17. 17.
    Dunning TH (1970) J Chem Phys 53:2823–2833CrossRefGoogle Scholar
  18. 18.
    Huzinaga S (1965) J Chem Phys 42:1293–1302CrossRefGoogle Scholar
  19. 19.
    Leininger ML, Huis TJV, Schaefer HF (1997) J Phys Chem A 101:4460–4464CrossRefGoogle Scholar
  20. 20.
    Papas BN, Schaefer HF (2006) J Mol Struct Theochem 768:175–181CrossRefGoogle Scholar
  21. 21.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin-Madison, MadisonGoogle Scholar
  22. 22.
    Weinhold F, Landis CR (2005) Valency and bonding: a natural bond order donor-acceptor perspective. Cambridge University Press, Cambridge, pp 32–36CrossRefGoogle Scholar
  23. 23.
    König FB, Schönbohm J, Bayles D (2001) AIM2000—a program to analyze and visualize atoms in molecules. J Comput Chem 22:545–559CrossRefGoogle Scholar
  24. 24.
    Gorelsky SI, AOMix program, rev. 5.62.
  25. 25.
    Gorelsky SI, Lever ABP (2001) J Organomet Chem 635:187–196CrossRefGoogle Scholar
  26. 26.
    Herrmann WA, Flöel M, Kulpe J, Felixberger JK, Herdtweck E (1988) J Organometal Chem 355:297–313CrossRefGoogle Scholar
  27. 27.
    Bau R, Carroll WE, Teller RG (1977) J Am Chem Soc 99:3872–3874CrossRefGoogle Scholar
  28. 28.
    Hinman JG, Rashid KA, Lough AJ, Morris RH (2001) Inorg Chem 40:2480–2481CrossRefGoogle Scholar
  29. 29.
    Michael TC, Phillip EF, Mark AG, Richard AW (1992) Inorg Chem 31:2359–2365CrossRefGoogle Scholar
  30. 30.
    Abrahams SC, Ginsberg AP, Koetzle TF, Marsh P, Sprinkle CR (1986) Inorg Chem 25:2500–2510CrossRefGoogle Scholar
  31. 31.
    Green MA, Huffman JC, Caulton KG (1982) J Am Chem Soc 104:2319–2320CrossRefGoogle Scholar
  32. 32.
    Wang CZ, Zhang XH, Li QS, Xie YM, King RB, Schaefer HF (2012) J Mol Model 18:2387–2398CrossRefGoogle Scholar
  33. 33.
    Shima T, Suzuki H (2005) Organometallics 24:3939–3945CrossRefGoogle Scholar
  34. 34.
    Ohki Y, Suzuki H (2000) Angew Chem Int Ed 39:3120–3122CrossRefGoogle Scholar
  35. 35.
    Koga N, Morokuma K (1993) J Mol Struct 300:181–189CrossRefGoogle Scholar
  36. 36.
    Cotton FA, Harris CB (1965) Inorg Chem 4:330–333CrossRefGoogle Scholar
  37. 37.
    Wang H, Xie Y, King RB, Schaefer HF (2006) J Am Chem Soc 128:11376–11384CrossRefGoogle Scholar
  38. 38.
    Wendt M, Weinhold F (2001) NBOView 1.1. Theoretical Chemistry Institute, University of Wisconsin-Madison, MadisonGoogle Scholar
  39. 39.
    Richard DA, Yuan OW, Zhang Q (2013) Organometallics 32:7540–7546CrossRefGoogle Scholar
  40. 40.
    Herrmann WA, Herdtwick E, Floel M, Kulpe J, Kusthardt U, Okuda J (1987) Polyhedron 6:1165–1182CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Mechatronical EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Department of Chemistry and Center for Computational ChemistryUniversity of GeorgiaAthensUSA
  3. 3.State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations