Advertisement

Journal of Molecular Modeling

, 20:2471 | Cite as

Hydration gibbs free energies of open and closed shell trivalent lanthanide and actinide cations from polarizable molecular dynamics

  • Aude Marjolin
  • Christophe Gourlaouen
  • Carine Clavaguéra
  • Pengyu Y. Ren
  • Jean-Philip Piquemal
  • Jean-Pierre Dognon
Original Paper
Part of the following topical collections:
  1. Topical Collection QUITEL 2013

Abstract

The hydration free energies, structures, and dynamics of open- and closed-shell trivalent lanthanide and actinide metal cations are studied using molecular dynamics simulations (MD) based on a polarizable force field. Parameters for the metal cations are derived from an ab initio bottom-up strategy. MD simulations of six cations solvated in bulk water are subsequently performed with the AMOEBA polarizable force field. The calculated first-and second shell hydration numbers, water residence times, and free energies of hydration are consistent with experimental/theoretical values leading to a predictive modeling of f-elements compounds.

Graphical Abstract

Solvation free energy of the actinide (III) and lanthanide (III) cations in water: AMOEBA vs. reference data

Keywords

Hydration free energy Lanthanides Actinides f-elements Polarizable force fields 

Notes

Acknowledgments

P. Y. R. thanks support by the National Institute of Health (R01GM106137). A.M. thanks the CEA for a PhD grant. J.-P. D. thanks the CEA nuclear energy division DEN/RBPCH for financial support. This work was granted access to the HPC resources of [CCRT/CINES/IDRIS] under the allocation c2013086146 made by GENCI (Grand Equipement National de Calcul Intensif).

Supplementary material

894_2014_2471_MOESM1_ESM.docx (34 kb)
ESM 1 MRCI results; validation on metal-water cluster interaction energies; structural data from SBC 216 H2O and PBC 215 H2O MD; hydration Gibbs free energies. Supporting information for this article is available on the WWW under http://dx.doi.org/. (DOCX 34 kb)

References

  1. 1.
    Kaltsoyannis N, Hay PJ, Li J, Blaudeau J-P, Bursten B (2011) Theoretical Studies of the Electronic Structure of Compounds of the Actinide Elements. In: Morss L, Edelstein N, Fuger J (eds) The Chemistry of the Actinide and Transactinide Elements. Springer, Netherlands, pp 1893–2012Google Scholar
  2. 2.
    Choppin G, Jensen M (2011) Actinides in Solution: Complexation and Kinetics. In: Morss L, Edelstein N, Fuger J (eds) The Chemistry of the Actinide and Transactinide Elements. Springer, Netherlands, pp 2524–2621Google Scholar
  3. 3.
    David FH (2008) About low oxidation states, hydration and covalence properties of f elements. Radiochim Acta 96(3):135–144CrossRefGoogle Scholar
  4. 4.
    Marcus Y (1994) A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophys Chem 51(2–3):111–127CrossRefGoogle Scholar
  5. 5.
    Clavaguéra-Sarrio C, Brenner V, Hoyau S, Marsden CJ, Millié P, Dognon JP (2003) Modeling of uranyl cation − water clusters. J Phys Chem B 107(13):3051–3060CrossRefGoogle Scholar
  6. 6.
    Clavaguera C, Pollet R, Soudan JM, Brenner V, Dognon JP (2005) Molecular dynamics study of the hydration of lanthanum(III) and europium(III) including many-body effects. J Phys Chem B 109(16):7614–7616CrossRefGoogle Scholar
  7. 7.
    Clavaguera C, Calvo F, Dognon JP (2006) Theoretical study of the hydrated Gd3+ ion: structure, dynamics, and charge transfer. J Chem Phys 124(7):74505CrossRefGoogle Scholar
  8. 8.
    Clavaguera C, Sansot E, Calvo F, Dognon JP (2006) Gd(III) polyaminocarboxylate chelate: realistic many-body molecular dynamics simulations for molecular imaging applications. J Phys Chem B 110(26):12848–12851CrossRefGoogle Scholar
  9. 9.
    Jiao D, King C, Grossfield A, Darden TA, Ren P (2006) Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. J Phys Chem B 110(37):18553–18559CrossRefGoogle Scholar
  10. 10.
    Piquemal JP, Perera L, Cisneros GA, Ren P, Pedersen LG, Darden TA (2006) Towards accurate solvation dynamics of divalent cations in water using the polarizable amoeba force field: From energetics to structure. J Chem Phys 125(5):054511CrossRefGoogle Scholar
  11. 11.
    Hagberg D, Bednarz E, Edelstein NM, Gagliardi L (2007) A quantum chemical and molecular dynamics study of the coordination of Cm(III) in water. J Am Chem Soc 129(46):14136–14137CrossRefGoogle Scholar
  12. 12.
    Villa A, Hess B, Saint-Martin H (2009) Dynamics and structure of Ln(III)-aqua ions: a comparative molecular dynamics study using ab initio based flexible and polarizable model potentials. J Phys Chem B 113(20):7270–7281CrossRefGoogle Scholar
  13. 13.
    Galbis E, Hernandez-Cobos J, den Auwer C, Le Naour C, Guillaumont D, Simoni E, Pappalardo RR, Sanchez Marcos E (2010) Solving the hydration structure of the heaviest actinide aqua ion known: the californium(III) case. Angew Chem Int Ed Engl 49(22):3811–3815CrossRefGoogle Scholar
  14. 14.
    Wu JC, Piquemal JP, Chaudret R, Reinhardt P, Ren P (2010) Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field. J Chem Theory Comput 6(7):2059–2070CrossRefGoogle Scholar
  15. 15.
    D’Angelo P, Spezia R (2012) Hydration of lanthanoids(III) and actinoids(III): an experimental/theoretical saga. Chem Eur J 18(36):11162–11178CrossRefGoogle Scholar
  16. 16.
    Real F, Trumm M, Schimmelpfennig B, Masella M, Vallet V (2013) Further insights in the ability of classical nonadditive potentials to model actinide ion-water interactions. J Comput Chem 34(9):707–719CrossRefGoogle Scholar
  17. 17.
    D’Angelo P, Martelli F, Spezia R, Filipponi A, Denecke MA (2013) Hydration properties and ionic radii of actinide(III) ions in aqueous solution. Inorg Chem 52(18):10318–10324CrossRefGoogle Scholar
  18. 18.
    Grossfield A, Ren P, Ponder JW (2003) Ion solvation thermodynamics from simulation with a polarizable force field. J Am Chem Soc 125(50):15671–15682CrossRefGoogle Scholar
  19. 19.
    Semrouni D, Isley Iii WC, Clavaguéra C, Dognon J-P, Cramer CJ, Gagliardi L (2013) Ab initio extension of the AMOEBA polarizable force field to Fe2+. J Chem Theory Comput 9(7):3062–3071CrossRefGoogle Scholar
  20. 20.
    Marjolin A, Gourlaouen C, Clavaguéra C, Ren P, Wu J, Gresh N, Dognon J-P, Piquemal J-P (2012) Toward accurate solvation dynamics of lanthanides and actinides in water using polarizable force fields: from gas-phase energetics to hydration free energies. Theor Chem Acc 131(4):1–14CrossRefGoogle Scholar
  21. 21.
    Gourlaouen C, Clavaguéra C, Marjolin A, Piquemal J-P, Dognon J-P (2013) Understanding the structure and electronic properties of Th4 + −water complexes. Can J Chem 91(9):821–831CrossRefGoogle Scholar
  22. 22.
    Cao X, Dolg M, Stoll H (2003) Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J Chem Phys 118(2):487–496CrossRefGoogle Scholar
  23. 23.
    Dunning JTH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023CrossRefGoogle Scholar
  24. 24.
    Werner HJ, Knowles PJ, Manby FR, Schutz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2010) MOLPRO, version 2010.1, a package of ab initio programsGoogle Scholar
  25. 25.
    Bagus PS, Hermann K, Bauschlicher JCW (1984) On the nature of the bonding of lone pair ligands to a transition metal. J Chem Phys 81(4):1966–1974CrossRefGoogle Scholar
  26. 26.
    Bauschlicher JCW, Bagus PS, Nelin CJ, Roos BO (1986) The nature of the bonding in XCO for X = Fe, Ni, and Cu. J Chem Phys 85(1):354–364CrossRefGoogle Scholar
  27. 27.
    Piquemal JP, Marquez A, Parisel O, Giessner-Prettre C (2005) A CSOV study of the difference between HF and DFT intermolecular interaction energy values: the importance of the charge transfer contribution. J Comput Chem 26(10):1052–1062CrossRefGoogle Scholar
  28. 28.
    Marjolin A, Gourlaouen C, Clavaguéra C, Dognon JP, Piquemal JP (2013) Towards energy decomposition analysis for open and closed shell f-elements mono aqua complexes. Chem Phys Lett 563:25–29CrossRefGoogle Scholar
  29. 29.
    Clavaguéra C, Dognon JP (2005) Accurate static electric dipole polarizability calculations of +3 charged lanthanide ions. Chem Phys 311(1–2):169–176CrossRefGoogle Scholar
  30. 30.
    Ponder JW (2009) TINKER: software tools for molecular design, version 6.2. 6.2 edn. Washington University School of Medicine, Saint LouisGoogle Scholar
  31. 31.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690CrossRefGoogle Scholar
  32. 32.
    Beeman D (1976) Some multistep methods for use in molecular dynamics calculations. J Comput Phys 20(2):130–139CrossRefGoogle Scholar
  33. 33.
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593CrossRefGoogle Scholar
  34. 34.
    Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys 22(2):245–268CrossRefGoogle Scholar
  35. 35.
    Allen PG, Bucher JJ, Shuh DK, Edelstein NM, Craig I (2000) Coordination chemistry of trivalent lanthanide and actinide ions in dilute and concentrated chloride solutions. Inorg Chem 39(3):595–601CrossRefGoogle Scholar
  36. 36.
    Penner-Hahn JE (2005) Characterization of “spectroscopically quiet” metals in biology. Coord Chem Rev 249(1–2):161–177CrossRefGoogle Scholar
  37. 37.
    Antonio M, Soderholm L (2011) X-Ray Absorption Spectroscopy of the Actinides. In: Morss L, Edelstein N, Fuger J (eds) The Chemistry of the Actinide and Transactinide Elements. Springer, Netherlands, pp 3086–3198Google Scholar
  38. 38.
    Bobyr E, Lassila JK, Wiersma-Koch HI, Fenn TD, Lee JJ, Nikolic-Hughes I, Hodgson KO, Rees DC, Hedman B, Herschlag D (2012) High-Resolution Analysis of Zn2+ Coordination in the Alkaline Phosphatase Superfamily by EXAFS and X-ray Crystallography. J Mol Biol 415(1):102–117CrossRefGoogle Scholar
  39. 39.
    Díaz-Moreno S, Ramos S, Bowron DT (2011) Solvation structure and Ion complexation of La3+ in a 1 molal aqueous solution of lanthanum chloride. J Phys Chem A 115(24):6575–6581CrossRefGoogle Scholar
  40. 40.
    Smirnov PR, Trostin VN (2012) Structural parameters of the nearest surrounding of lanthanide ions in aqueous solutions of their salts. Russ J Gen Chem 82(3):360–378CrossRefGoogle Scholar
  41. 41.
    Smirnov PR, Trostin VN (2012) Sructural parameters of the nearest surrounding of tri- and tetravalent actinide ions in aqueous solutions of actinide salts. Russ J Gen Chem 82(7):1204–1213CrossRefGoogle Scholar
  42. 42.
    Impey RW, Madden PA, McDonald IR (1983) Hydration and mobility of ions in solution. J Phys Chem 87(25):5071–5083CrossRefGoogle Scholar
  43. 43.
    Helm L, Merbach AE (2005) Inorganic and bioinorganic solvent exchange mechanisms. Chem Rev 105(6):1923–1959CrossRefGoogle Scholar
  44. 44.
    Skanthakumar S, Antonio MR, Wilson RE, Soderholm L (2007) The curium aqua Ion. Inorg Chem 46(9):3485–3491CrossRefGoogle Scholar
  45. 45.
    D'Angelo P, Zitolo A, Migliorati V, Chillemi G, Duvail M, Vitorge P, Abadie S, Spezia R (2011) Revised ionic radii of lanthanoid(III) ions in aqueous solution. Inorg Chem 50(10):4572–4579CrossRefGoogle Scholar
  46. 46.
    Farkas I, Grenthe I, Bányai I (2000) The rates and mechanisms of water exchange of actinide aqua ions: a variable temperature 17O NMR study of U(H2O)104+, UF(H2O)93+, and Th(H2O)104+. J Phys Chem A 104(6):1201–1206CrossRefGoogle Scholar
  47. 47.
    David FH, Vokhmin V (2001) Hydration and entropy model for ionic and covalent monatomic ions. J Phys Chem A 105(42):9704–9709CrossRefGoogle Scholar
  48. 48.
    Joung IS, Cheatham TE 3rd (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112(30):9020–9041CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratoire de Chimie ThéoriqueSorbonne Universités, UMPC, CNRS UMR 7616ParisFrance
  2. 2.Laboratoire de Chimie Moléculaire et de catalyse pour l’EnergieCEA, CNRS UMR 3299, CEA SaclayGif-sur YvetteFrance
  3. 3.Laboratoire de Chimie QuantiqueUniversité de Strasbourg, CNRS UMR 7177StrasbourgFrance
  4. 4.Laboratoire de Chimie MoléculaireDepartment of Chemistry, Ecole Polytechnique, CNRSPalaiseauFrance
  5. 5.Department of Biomedical engineeringUniversity of Texas at AustinAustinUSA

Personalised recommendations