Journal of Molecular Modeling

, 20:2455 | Cite as

Bonding analysis of the donor–acceptor sandwiches CpE–MCp (E = B, Al, Ga; M = Li, Na, K; Cp = η 5-C5H5)

  • Suhong Huo
  • Decheng Meng
  • Xiayan Zhang
  • Lingpeng Meng
  • Xiaoyan LiEmail author
Original Paper


The nature of E–M bonds in CpE–MCp (E = B, Al, Ga; M = Li, Na, K; Cp = η 5-C5H5) donor–acceptor sandwiches was studied using the atoms in molecules (AIM) theory, electron localization function (ELF), energy decomposition analysis (EDA), and natural bond orbital analysis (NBO) methods. Both topological and orbital analysis show that the E atom determines the bond strength of the E–M bonds, while the M atom has little influence on it. E–M bond strength decreases in the order E = B, Al, and Ga. The EDA analysis shows that the electrostatic character decreases following the sequence E = B > Al > Ga. Not only the s orbital, but also the p orbital of the E/M atom participates in formation of the E–M bond. The interactions of E and M with Cp are different. The M–Cp interaction is purely electrostatic while the E–Cp interaction has a partly covalent character.

Graphical Abstract

Left Three-dimensional (3D) cross section electron localization function through the molecules of CpE-MCp (E = B, Al, Ga; M = Li, Na, K). Blue Core C(E/M) basins, red valence V(E, M) basins, green bonding V(C, C) basin. Right Molecular graph of CpE-MCp


Donor–acceptor sandwich E–M bonds Atoms in molecules Electron localization function Energy decomposition analysis 



Thanks to International Science Editing for editing this paper. This work was supported by the National Natural Science Foundation of China (Contract NO. 21102033, 21372062, 21171047, 21373075, 21371045), the Education Department Foundation of Hebei Province (NO. ZD20131053, ZH2012106). The authors would also like to thank Professor Qingzhong Li for providing the ADF2008.1 program.


  1. 1.
    Kealy TJ, Pauson P (1951) Nature 168:1039–1040CrossRefGoogle Scholar
  2. 2.
    Jutzi P, Burford N (1998) Metallocenes. Wiley, New YorkGoogle Scholar
  3. 3.
    Scheirs J, Kaminsky W (2000) Metallocene-based polyolefins, vols 1 and 2. Wiley, Chichester, UKGoogle Scholar
  4. 4.
    Togni A, Hayashi T (1995) Ferrocenes. Verlach Chemie, WeinheimGoogle Scholar
  5. 5.
    Jones WD (2005) Inorg Chem 44:4475–4484CrossRefGoogle Scholar
  6. 6.
    Jansen G (2000) International Conference on Chemical Bonding: State of the Art in Conceptual Quantum Chemistry. La Colle-sur-Loup: FranceGoogle Scholar
  7. 7.
    Resa I, Carmona E, Gutierrez-Puebla E, Monge A (2004) Science 305:1136–1138CrossRefGoogle Scholar
  8. 8.
    Xie Y, Schaefer HF III, King RB (2005) J Am Chem Soc 127:2818–2819CrossRefGoogle Scholar
  9. 9.
    Xie Y, Schaefer HF III, Jemmis ED (2005) Chem Phys Lett 402:414–421CrossRefGoogle Scholar
  10. 10.
    Xie ZZ, Fang WH (2005) Chem Phys Lett 404:212–216CrossRefGoogle Scholar
  11. 11.
    Grirrane A, Resa I, Rodriguez A, Carmona E, Alvarez E, Gutierrez-Puebla E, Monge A, Galindo A, del Rio D, Andersen RA (2007) J Am Chem Soc 129:693–703CrossRefGoogle Scholar
  12. 12.
    Li X, Huo S, Sun Z, Zheng SJ, Meng LP (2013) Organometallics 32:1060–1066CrossRefGoogle Scholar
  13. 13.
    Timoshkin AY, Schaefer HF III (2005) Organometallics 24:3343–3345CrossRefGoogle Scholar
  14. 14.
    Gamer MT, Roesky PW, Konchenko SN, Nava P, Ahlriches R (2006) Angew Chem Int Ed 45:4447–4451CrossRefGoogle Scholar
  15. 15.
    Merino G, Beltrán HI, Vela A (2006) Inorg Chem 45(3):1091–1095CrossRefGoogle Scholar
  16. 16.
    He N, Xie HB, Ding YH (2007) Orgnometallics 26:6839–6843CrossRefGoogle Scholar
  17. 17.
    Pauling L, Kamb B (1986) Proc Natl Acad Sci USA 83:3569–3571CrossRefGoogle Scholar
  18. 18.
    Bader RFW (1994) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  19. 19.
    Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. From solid state to DNA and drug design. Wiley, WeinheimCrossRefGoogle Scholar
  20. 20.
    Silvi B, Savin A (1994) Nature 371:683–686CrossRefGoogle Scholar
  21. 21.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403CrossRefGoogle Scholar
  22. 22.
    Silvi B (2002) J Mol Struct 614:3–10CrossRefGoogle Scholar
  23. 23.
    Savin A, Silvi B, Coionna F (1996) Can J Chem 74:1088–1096CrossRefGoogle Scholar
  24. 24.
    Morokuma K (1971) J Chem Phys 55:1236–1245CrossRefGoogle Scholar
  25. 25.
    Ziegler T, Rauk A (1977) Theor Chim Acta 46:1–10CrossRefGoogle Scholar
  26. 26.
    Coriani S, Haaland A, Helgaker T, Jørgensen P (2006) ChemPhysChem 7:245–249CrossRefGoogle Scholar
  27. 27.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  28. 28.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB et al (2004) GAUSSIAN 03, Revision D. 02, Gaussian, Inc., Wallingford, CTGoogle Scholar
  30. 30.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654CrossRefGoogle Scholar
  31. 31.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PR (1983) J Comput Chem 4Google Scholar
  32. 32.
    Popelier P (2000) Atoms in molecules—an introduction. UMIST, ManchesterGoogle Scholar
  33. 33.
    Biegler-König F(2000), AIM 2000, Version 1.0; University of Applied Science: Bielefeld, GermanyGoogle Scholar
  34. 34.
    Keith TA (2010), AIMAll, version 10.05.04, see
  35. 35.
    Feixas F, Matito E, Duran M, Solà M, Silvi B (2010) J Chem Theory Comput 6:2736–2742CrossRefGoogle Scholar
  36. 36.
    Noury S, Krokidis X, Fuster F, Silvi B (1999) J Comput Chem 23:597–604CrossRefGoogle Scholar
  37. 37.
    Matito E, Silvi B, Duran M, Sola M (2006) J Chem Phys 125:24301CrossRefGoogle Scholar
  38. 38.
    Lu T, Chen F (2012) J Comput Chem 33:580–592CrossRefGoogle Scholar
  39. 39.
    ADF2008.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. Available from:
  40. 40.
    van Lenthe E, Baerends EJ, Snijers JG (1994) J Chem Phys 101:9783CrossRefGoogle Scholar
  41. 41.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  42. 42.
    Weinhold F (1997) J Mol Struct THEOCHEM 398:181–197CrossRefGoogle Scholar
  43. 43.
    Kar T, Ángyán JG, Sannigrahi AB (2000) J Phys Chem A 104:9953–9963CrossRefGoogle Scholar
  44. 44.
    Firme CL, Antunes OAC, Esteves PM (2009) Chem Phys Lett 468:129–133CrossRefGoogle Scholar
  45. 45.
    Bader RFW, Matta CF (2001) Inorg Chem 40:5603CrossRefGoogle Scholar
  46. 46.
    Wang YG, Matta, C, Werstiuk, NH(2003) J Comp Chem 1720–1729Google Scholar
  47. 47.
    Bianchi R, Gervasio G, Marabello D (2000) Inorg Chem 39:2360–2366CrossRefGoogle Scholar
  48. 48.
    Cremer D, Kraka E (1984) Angew Chem Int Ed Engl 23:627–628CrossRefGoogle Scholar
  49. 49.
    Noury S, Colonna F, Savin A, Silvi B (1998) J Mol Struct 450:59–68CrossRefGoogle Scholar
  50. 50.
    Llusar R, Beltrán A, Andrés J, Fuster F, Silvi B (2001) J Phys Chem A 105:9460–9466CrossRefGoogle Scholar
  51. 51.
    Glendening ED, Landis CR, Weinhold F (2012) WIRES Comput Mol Sci 2:1–42CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Suhong Huo
    • 1
    • 2
  • Decheng Meng
    • 1
  • Xiayan Zhang
    • 1
  • Lingpeng Meng
    • 1
  • Xiaoyan Li
    • 1
    Email author
  1. 1.College of Chemistry and Material ScienceHebei Normal UniversityShijiazhuangChina
  2. 2.College of Chemical and Materials EngineeringYanching Institute of TechnologySanheChina

Personalised recommendations