Journal of Molecular Modeling

, 20:2453 | Cite as

On the electron affinity of cytosine in bulk water and at hydrophobic aqueous interfaces

  • Esteban Vöhringer-Martinez
  • Ciro Dörner
  • Bernd Abel
Original Paper
  • 161 Downloads

Abstract

In the past one possible mechanism of DNA damage in bulk water has been attributed to the presence of hydrated electrons in water. Recently, one important property of hydrated electrons, namely their binding energy, was reported to be smaller at hydrophobic interfaces than in bulk aqueous solution. This possibly opens up new reaction possibilities with different solutes such as the DNA at hydrophobic, aqueous interfaces. Here, we use QM/MM molecular dynamics simulation to study how the molecular environment at the vacuum-water interface and in the bulk alters the electron affinity of cytosine being a characteristic part of the DNA. The electron affinity at the interface is closer to the corresponding binding energy of the partially hydrated electron. The increased energy resonance makes the electron capture process more probable and suggests that hydrated electrons at hydrophobic interfaces may be more reactive than the fully hydrated ones. Additionally, we found that the relaxation of the anionic form after electron attachment also induces a proton transfer from the surrounding solvent that was confirmed by comparison with the experimental reduction potential.

Graphical Abstract

Probability isodensity surface of the excess electron after its instantaneous capture by cytosine represented by the single occupied molecular orbital of the anion at the geometry of the neutral form

Keywords

Cytosine QM/MM Electron affinity 

Notes

Acknowledgments

E. V.-M. thanks FONDECYT for financial support provided by Proyecto 11121179, CONICYT, Departamento de Relaciones Internacionales “Programa de Cooperación Científica Internacional” CONICYT/DFG-607 and grant ICM No 120082. B. A. thanks the Deutsche Forschungsgemeinschaft (DFG) for financial support (AB 63/12-1).

Supplementary material

894_2014_2453_MOESM1_ESM.pdf (3 mb)
(PDF 2.96 MB)

References

  1. 1.
    Hart EJ, Boag JW (1962) J Am Chem Soc 84:4090CrossRefGoogle Scholar
  2. 2.
    Barrios R, Skurski P, Simons J (2002) The J Phys Chem B 106:7991CrossRefGoogle Scholar
  3. 3.
    Simons J (2006) Acc Chem Res 39:772CrossRefGoogle Scholar
  4. 4.
    Elkins MH, Williams HL, Shreve AT, Neumark DM (2013) Science 342:1496CrossRefGoogle Scholar
  5. 5.
    Siefermann KR, Liu Y, Lugovoy E, Link O, Faubel M, Buck U, Winter B, Abel B (2010) Nat Chem 2:274CrossRefGoogle Scholar
  6. 6.
    Siefermann KR, Abel B (2011) Angewandte Chemie 50:5264CrossRefGoogle Scholar
  7. 7.
    Abel B, Buck U, Sobolewski AL, Domcke W (2012) Phys Chem Chem Phys 14:22CrossRefGoogle Scholar
  8. 8.
    Abel B (2013) Ann Rev Phys Chem 64:533CrossRefGoogle Scholar
  9. 9.
    Schyman, Laaksonen, Hugosson (2008) Chem Phys Lett 462:6Google Scholar
  10. 10.
    Schyman P, Laaksonen A (2008) J Am Chem Soc 130:12254CrossRefGoogle Scholar
  11. 11.
    Smyth M, Kohanoff J (2012) J Am Chem Soc 134:9122CrossRefGoogle Scholar
  12. 12.
    Kim S, Schaefer HF (2007) J Phys Chem A 111:10381CrossRefGoogle Scholar
  13. 13.
    Cauët E, Bogatko S, Liévin J, De Proft F, Geerlings P (2013) The J Phys Chem. B 117:9669CrossRefGoogle Scholar
  14. 14.
    Wang C-R, Nguyen J, Lu Q-B (2009) J Am Chem Soc 131:11320CrossRefGoogle Scholar
  15. 15.
    Gu J, Leszczynski J, Schaefer HF (2012) Chem Rev 112:5603CrossRefGoogle Scholar
  16. 16.
    Gu J, Xie Y, Schaefer HF (2006) J Am Chem Soc 128:1250CrossRefGoogle Scholar
  17. 17.
    Wang CR, Luo T, Lu QB (2008) Phys Chem Chem Phys 10:4463CrossRefGoogle Scholar
  18. 18.
    Lyngdoh RHD, Schaefer HF (2009) Acc Chem Res 42:563CrossRefGoogle Scholar
  19. 19.
    Smyth M, Kohanoff J (2011) Phys Rev Lett 106:238108CrossRefGoogle Scholar
  20. 20.
    Shreve, Yen, Neumark (2010) Chem Phys Lett 493:4Google Scholar
  21. 21.
    Tang Y, Shen H, Sekiguchi K, Kurahashi N, Mizuno T, Suzuki Yi, Suzuki T (2010) Phys Chem Chem Phys 12:3653CrossRefGoogle Scholar
  22. 22.
    Li X, Sevilla MD, Sanche L (2003) J Am Chem Soc 125:8916CrossRefGoogle Scholar
  23. 23.
    Wang CR, Lu Q-B (2007) Angewandte Chemie 46:6316CrossRefGoogle Scholar
  24. 24.
    Slavicek P, Winter B, Faubel M, Bradforth SE, Jungwirth P (2009) J Am Chem SocGoogle Scholar
  25. 25.
    Pluhařová E, Schroeder C, Seidel R, Bradforth SE, Winter B, Faubel M, Slavicek P, Jungwirth P (2013) J Phys Chem LettGoogle Scholar
  26. 26.
    Lee GCY, Prestegard JH, Chan SI (1972) J Am Chem Soc 94:951CrossRefGoogle Scholar
  27. 27.
    Neese F (2011) Wiley Interdisciplinary Reviews: Computational Molecular Science, vol 2, p 73Google Scholar
  28. 28.
    Schäfer A, Horn H, Ahlrichs R (1992) The J Chem Phys 97:2571CrossRefGoogle Scholar
  29. 29.
    Spoel Dvd, Lindahl E, Hess B, Groenhof G, Mark AE, Hess B (2005) J Comput Chem 26:1701CrossRefGoogle Scholar
  30. 30.
    Bussi G, Donadio D, Parrinello M (2007) The J Chem Phys 126:014101CrossRefGoogle Scholar
  31. 31.
    Simons J (2011) Ann Rev Phys Chem 62:107CrossRefGoogle Scholar
  32. 32.
    Jordan KD, Voora VK, Simons J (2014) Theoretical Chemistry Accounts: Theory, Computation, and Modeling. Theor Chim Acta 133:1Google Scholar
  33. 33.
    Steenken S, Telo J, Novatis HM, Candeias LP (1992) J Am Chem Soc 114:4701CrossRefGoogle Scholar
  34. 34.
    Jungwirth P, Winter B (2008) Ann Rev Phys ChemGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Esteban Vöhringer-Martinez
    • 1
  • Ciro Dörner
    • 1
  • Bernd Abel
    • 2
    • 3
  1. 1.Departamento de Físico-Química, Facultad de Ciencias QuímicasUniversidad de ConcepciónConcepciónChile
  2. 2.Leibniz Institute of Surface Modification (IOM), Chemical DepartmentLeipzigGermany
  3. 3.Wilhelm-Ostwald Institute for Physical and Theoretical ChemistryUniversität LeipzigLeipzigGermany

Personalised recommendations