Journal of Molecular Modeling

, 20:2439 | Cite as

Theoretical investigation on the selective detection of SO2 molecule by AlN nanosheets

  • Somayeh. F. RastegarEmail author
  • Nasser L. Hadipour
  • Hamed Soleymanabadi
Original Paper


Theoretical calculations focused on the ability of an AlN nanosheet to detect O3 and SO2 molecules based on the dispersion corrected B3LYP (B3LYP-D) and B97D density functionals. Equilibrium geometries, stabilities, and the electronic properties of O3 and SO2 adsorptions on the surface of an AlN sheet were explored. The adsorption energies were calculated to be about −17.80 and −21.51 kcal mol-1 at B3LYP-D level for O3 and SO2 corresponding to the most stable configurations, respectively. It was shown that the electrical conductance of the AlN sheet may be increased after the SO2 adsorption, being somewhat insensitive to the O3 adsorption. Thus, the AlN sheet may selectively detect SO2 molecules in the presence of O3 molecules.


DFT B3LYP-D B97D Ozone Sulfur dioxide 


  1. 1.
    Peyghan AA, Soltani A, Pahlevani AA, Kanani Y, Khajeh S (2013) A first-principles study of the adsorption behavior of CO on Al-and Ga-doped single-walled BN nanotubes. Appl Surf Sci 270:25–32CrossRefGoogle Scholar
  2. 2.
    Beheshtian J, Peyghan AA, Bagheri Z (2012) Quantum chemical study of fluorinated AlN nano-cage. Appl Surf Sci 259:631–636CrossRefGoogle Scholar
  3. 3.
    Soltani A, Ahmadi Peyghan A, Bagheri Z (2013) H2O2 adsorption on the BN and SiC nanotubes: a DFT study. Phys E 48:176–180CrossRefGoogle Scholar
  4. 4.
    Ahmadi Peyghan A, Pashangpour M, Bagheri Z, Kamfiroozi M (2012) Energetic, structural, and electronic properties of hydrogenated Al12 P12 nanocluster. Phys E 44:1436–1440CrossRefGoogle Scholar
  5. 5.
    Vurgaftman I, Meyer J, Ram-Mohan L (2001) Band parameters for III–V compound semiconductors and their alloys. J Appl Phys 89(11):5815–5875CrossRefGoogle Scholar
  6. 6.
    Mourad D (2013) Tight-binding branch-point energies and band offsets for cubic InN, GaN, AlN, and AlGaN alloys. J Appl Phys 113(12):123705CrossRefGoogle Scholar
  7. 7.
    Cao Y, Jena D (2007) High-mobility window for two-dimensional electron gases at ultrathin AlN/GaN heterojunctions. Applied physics letters 90 (18):182112-182112-182113Google Scholar
  8. 8.
    Nipko J, Loong C-K (1998) Phonon excitations and related thermal properties of aluminum nitride. Phys Rev B 57(17):10550CrossRefGoogle Scholar
  9. 9.
    Yamada O, Hirao K, Koizumi M, Miyamoto Y (1989) Combustion synthesis of silicon carbide in nitrogen atmosphere. J Am Ceram Soc 72(9):1735–1738CrossRefGoogle Scholar
  10. 10.
    Ahmadi Peyghan A, Omidvar A, Hadipour NL, Bagheri Z, Kamfiroozi M (2012) Can aluminum nitride nanotubes detect the toxic NH3 molecules? Phys E 44:1357–1360CrossRefGoogle Scholar
  11. 11.
    Beheshtian J, Ahmadi Peyghan A, Bagheri Z (2012) A first-principles study of H2S adsorption and dissociation on the AlN nanotube. Phys E 44:1963–1968CrossRefGoogle Scholar
  12. 12.
    Ahmadi A, Hadipour NL, Kamfiroozi M, Bagheri Z (2012) Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde. Sensors Actuators B Chem 161:1025–1029CrossRefGoogle Scholar
  13. 13.
    Holý V, Stangl J, Fromherz T, Lechner RT, Wintersberger E, Bauer G, Dais C, Müller E, Grützmacher D (2009) X-ray diffraction investigation of a three-dimensional Si/SiGe quantum dot crystal. Phys Rev B 79(3):035324CrossRefGoogle Scholar
  14. 14.
    Ahmadi A, Beheshtian J, Hadipour NL (2011) Interaction of NH3 with aluminum nitride nanotube: electrostatic vs. covalent. Physica E 43(9):1717–1719Google Scholar
  15. 15.
    de Almeida JM, Kar T, Piquini P (2010) AlN, GaN, Al x Ga 1− x N nanotubes and GaN/Al x Ga 1− x N nanotube heterojunctions. Phys Lett A 374(6):877–881CrossRefGoogle Scholar
  16. 16.
    Trinkler L, Berzina B, Kasjan D, Chen L-C (2007) Luminescence properties of AlN nanostructures revealed under UV light irradiation. In: Journal of Physics: Conference Series. 93:012040 doi:10.1088/1742-6596/93/1/012040. IOP Publishing, BristolGoogle Scholar
  17. 17.
    Moradi M, Naderi N First principle study of hydrogen storage on the graphene-like aluminum nitride nanosheet. Structural Chemistry:1–8Google Scholar
  18. 18.
    Rastegar SF, Peyghan AA, Ghenaatian HR, Hadipour NL (2013) NO2 detection by nanosized AlN sheet in the presence of NH3: DFT studies. Appl Surf Sci 274:217–220CrossRefGoogle Scholar
  19. 19.
    Giordano C, Ingrosso I, Todaro MT, Maruccio G, De Guido S, Cingolani R, Passaseo A, De Vittorio M (2009) AlN on polysilicon piezoelectric cantilevers for sensors/actuators. Microelectron Eng 86(4–6):1204–1207CrossRefGoogle Scholar
  20. 20.
    Laurent T, Bastien FO, Pommier J-C, Cachard A, Remiens D, Cattan E (2000) Lamb wave and plate mode in ZnO/silicon and AlN/silicon membrane: Application to sensors able to operate in contact with liquid. Sensors Actuators A Phys 87(1):26–37CrossRefGoogle Scholar
  21. 21.
    Cohen HJ, Drew RT, Johnson JL, Rajagopalan K (1973) Molecular basis of the biological function of molybdenum. The relationship between sulfite oxidase and the acute toxicity of bisulfite and SO2. Proc Natl Acad Sci 70(12):3655–3659CrossRefGoogle Scholar
  22. 22.
    Olszyk DM, Tingey DT (1984) Phytotoxicity of Air Pollutants Evidence for the Photodetoxification of SO2 but Not O3. Plant Physiol 74(4):999–1005CrossRefGoogle Scholar
  23. 23.
    Pryor WA, Squadrito GL, Friedman M (1995) The cascade mechanism to explain ozone toxicity: the role of lipid ozonation products. Free Radic Biol Med 19(6):935–941CrossRefGoogle Scholar
  24. 24.
    Mustafa MG (1990) Biochemical basis of ozone toxicity. Free Radic Biol Med 9(3):245–265CrossRefGoogle Scholar
  25. 25.
    Stokinger H, Wagner W, Wright P (1956) Studies of ozone toxicity. I. Potentiating effects of exercise and tolerance development. AMA archives of industrial health 14(2):158Google Scholar
  26. 26.
    Antony J, Grimme S (2006) Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. Phys Chem Chem Phys 8(45):5287–5293CrossRefGoogle Scholar
  27. 27.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363CrossRefGoogle Scholar
  28. 28.
    de Almeida JE, de Brito MF, de Castilho C, Kakanakova-Georgieva A, Gueorguiev GK (2012) Defects in hexagonal-AlN sheets by first-principles calculations. Eur Phys J B 85(1):1–9Google Scholar
  29. 29.
    Murray J, Lane P, Clark T, Riley K, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548CrossRefGoogle Scholar
  30. 30.
    Beheshtian J, Baei MT, Peyghan AA (2012) Theoretical study of CO adsorption on the surface of BN, AlN, BP and AlP nanotubes. Surf Sci 606:981–985CrossRefGoogle Scholar
  31. 31.
    Li SS (2007) Semiconductor physical electronics. Springer, HeidelbergGoogle Scholar
  32. 32.
    Beheshtian J, Baei M, Peyghan A, Bagheri Z (2012) Electronic sensor for sulfide dioxide based on AlN nanotubes: a computational study. J Mol Model 18:4745–4750CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Somayeh. F. Rastegar
    • 1
    Email author
  • Nasser L. Hadipour
    • 2
  • Hamed Soleymanabadi
    • 3
  1. 1.Young Researchers and Elite Club, Central Tehran BranchIslamic Azad UniversityTehranIran
  2. 2.Department of ChemistryTarbiat Modares UniversityTehranIran
  3. 3.Central Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations