Advertisement

Journal of Molecular Modeling

, 20:2433 | Cite as

Bonding analysis of telluroketones H2A = Te (A = C, Si, Ge)

  • Naziah B. Jaufeerally
  • Ponnadurai RamasamiEmail author
  • Paul Jerabek
  • Gernot FrenkingEmail author
Original Paper
Part of the following topical collections:
  1. Topical Collection on the occasion of Prof. Tim Clark’s 65th birthday

Abstract

Quantum chemical calculations using density functional theory BP86/def2-TZVPP and ab initio methods at CCSD(T)/def2-TZVPP have been carried for the telluroketones H2A=Te (A = C, Si, Ge). DFT calculations have also been carried out for the ketones H2C=E (E = O, S, Se, Te) and for the complexes NHC → [H2A=Te] → B(C6F5)3. The nature of the bonding has been investigated with charge- and energy decomposition analyses. The calculated bond dissociation energies for the double bonds of the H2C = E and H2A = Te molecules show the expected trends O > S > Se > Te for atom E and C > Si > Ge for atom A. Complexation of the telluroketones in NHC → [H2A = Te] → B(C6F5)3 leads to longer and weaker A-Te bonds which exhibit the surprising trend for the bond dissociation energy Si > Ge > C. The contribution of the π bonding in H2A = Te increases for the heavier atoms with the sequence C < Si < Ge.

Keywords

Telluroketones Molecular orbitals Natural bond orbital Energy decomposition analysis 

Notes

Acknowledgments

N.J. and P.R. acknowledge the facilities offered by the University of Mauritius and the Tertiary Education Commission of Mauritius. P.R. is also grateful to the financial support from German academic exchange service (DAAD). P.J. and G.F. acknowledge financial support by the Deutsche Forschungsgemeinschaft.

Supplementary material

894_2014_2433_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)

References

  1. 1.
    Vollhardt KPC (2011) Organic chemistry: structure and function. Freeman, New YorkGoogle Scholar
  2. 2.
    Potapov VA, Amosova SV (2003) Russ J Org Chem 39:1373CrossRefGoogle Scholar
  3. 3.
    Miao X, Cao W, Zheng W, Wang J, Zhang X, Gao J, Yang C, Kong D, Xu H, Wang L, Yang Z (2013) Angew Chem Int Ed Engl 52:7781CrossRefGoogle Scholar
  4. 4.
    Fischer RC, Power PP (2010) Chem Rev 110:3877CrossRefGoogle Scholar
  5. 5.
    Power PP (2010) Nature 463:171CrossRefGoogle Scholar
  6. 6.
    Yao S, Xiong Y, Brym M, Driess M (2008) Chem Asian J 3:113CrossRefGoogle Scholar
  7. 7.
    Tokitoh N, Matsumoto T, Okazaki R (1997) J Am Chem Soc 119:2337CrossRefGoogle Scholar
  8. 8.
    Tiekink ERT (2012) Dalton Trans 41:6390CrossRefGoogle Scholar
  9. 9.
    Kapp J, Remko M, Schleyer PvR (1996) J Am Chem Soc 118: 5751Google Scholar
  10. 10.
    Takeda N, Tokitoh N, Okazaki R (2000) Chem Lett 3:244CrossRefGoogle Scholar
  11. 11.
    Iwamoto T, Masuda H, Ishida S, Kabuto C, Kira M (2004) J Organomet Chem 689:1337CrossRefGoogle Scholar
  12. 12.
    Ibrahim Al-Rafia S M, Lummis PA, Ferguson MJ, McDonald R, Rivard E (2010) Inorg Chem 49:9709Google Scholar
  13. 13.
    Mandal SK, Roesky HW (2010) Chem Commun 46:6016CrossRefGoogle Scholar
  14. 14.
    Asay M, Jones C, Driess M (2011) Chem Rev 111:354CrossRefGoogle Scholar
  15. 15.
    Tokitoh N, Matsumoto T, Manmaru K, Okazaki R (1993) J Am Chem Soc 115:8855CrossRefGoogle Scholar
  16. 16.
    Suzuki H, Tokitoh N, Nagase S, Okazaki R (1994) J Am Chem Soc 116:11578CrossRefGoogle Scholar
  17. 17.
    Saito M, Tokitoh N, Okazaki R (1997) J Am Chem Soc 119:11124CrossRefGoogle Scholar
  18. 18.
    Tokitoh N, Matsumoto T, Okazaki R (1997) J Am Chem Soc 119:2337CrossRefGoogle Scholar
  19. 19.
    Suzuki H, Tokitoh N, Okazaki R, Nagase S, Goto M (1998) J Am Chem Soc 120:11096CrossRefGoogle Scholar
  20. 20.
    Matsumoto T, Tokitoh N, Okazaki R (1999) J Am Chem Soc 121:8811CrossRefGoogle Scholar
  21. 21.
    Iwamoto T, Sato K, Ishida S, Kabuto C, Kira M (2006) J Am Chem Soc 128:16914CrossRefGoogle Scholar
  22. 22.
    Li L, Fukawa T, Matsuo T, Hashizume D, Fueno H, Tanaka K, Tamao K (2012) Nature Chem 4:361CrossRefGoogle Scholar
  23. 23.
    Ghadwal RS, Azhakar R, Roesky HW, Pröpper K, Dittrich B, Goedecke C, Frenking G (2012) Chem Commun 48:8186CrossRefGoogle Scholar
  24. 24.
    Roper WR, Headford CEL (1983) J Organomet Chem 244:C53CrossRefGoogle Scholar
  25. 25.
    Roper WR, Hill AF, Waters JM, Wright AH (1983) J Am Chem Soc 105:5939CrossRefGoogle Scholar
  26. 26.
    Minoura M, Kawashima T, Okazaki R (1993) J Am Chem Soc 115:7019CrossRefGoogle Scholar
  27. 27.
    Jaufeerally NB, Abdallah HH, Ramasami P, Schaefer III HF (2012) Theor Chem Acc 131:1127Google Scholar
  28. 28.
    Jaufeerally NB, Abdallah HH, Ramasami P (2013) Comp Theor Chem 1016:62CrossRefGoogle Scholar
  29. 29.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  30. 30.
    Perdew JP (1986) Phys Rev B 33:8822CrossRefGoogle Scholar
  31. 31.
    Gaussian 03, Revision E.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Milliam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega, N.; Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck, AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox D J, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong C, Gonzalez MW, Pople JA (2004) Gaussian Inc, Pittsburgh PAGoogle Scholar
  32. 32.
    Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165CrossRefGoogle Scholar
  33. 33.
    Ahlrichs R (2004) Phys Chem Chem Phys 6:5119CrossRefGoogle Scholar
  34. 34.
    Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys 242:652Google Scholar
  35. 35.
    Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119CrossRefGoogle Scholar
  36. 36.
    Weigend F (2006) Phys Chem Chem Phys 8:1057CrossRefGoogle Scholar
  37. 37.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297CrossRefGoogle Scholar
  38. 38.
    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113CrossRefGoogle Scholar
  39. 39.
    Deglmann P, May K, Furche F, Ahlrichs R (2004) Chem Phys Lett 384:103CrossRefGoogle Scholar
  40. 40.
    Deglmann P, Furche F, Ahlrichs R (2001) Chem Phys Lett 362:511CrossRefGoogle Scholar
  41. 41.
    Deglmann P, Furche F (2002) J Chem Phys 117:9535CrossRefGoogle Scholar
  42. 42.
    Raghavachari K, Trucks GW (1989) Chem Phys Lett 157:479CrossRefGoogle Scholar
  43. 43.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  44. 44.
    Kendall R, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796CrossRefGoogle Scholar
  45. 45.
    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358CrossRefGoogle Scholar
  46. 46.
    Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999) J Chem Phys 110:7667CrossRefGoogle Scholar
  47. 47.
    Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, O'Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, MOLPRO, version 2012.1. a package of ab initio programs, http://www.molpro.net
  48. 48.
    Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735CrossRefGoogle Scholar
  49. 49.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899CrossRefGoogle Scholar
  50. 50.
    Diedenhofen M, Wagener T, Frenking G (2001) The accuracy of quantum chemical methods for the calculation of transition metal compounds. In: Cundari T (ed) Computational organometallic chemistry. Dekker, New York, pp 69–121Google Scholar
  51. 51.
    Fernández I, Frenking G (2007) Chem Eur J 13:5873CrossRefGoogle Scholar
  52. 52.
    Fernández I, Frenking G (2006) Chem Eur J 12:3617CrossRefGoogle Scholar
  53. 53.
    Fernández I, Frenking G (2007) Faraday Discuss 135:403Google Scholar
  54. 54.
    Ziegler T, Rauk A (1977) Theor Chim Acta 46:1CrossRefGoogle Scholar
  55. 55.
    ADF2012.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, http://www.scm.com
  56. 56.
    Snijders JG, Vernooijs P, Baerends EJ (1981) At Data Nucl Data Tables 26:483CrossRefGoogle Scholar
  57. 57.
    Krijn J, Baerends EJ (1984) Internal Report: Fit Functions in the HFS Method. Vrije Universiteit, AmsterdamGoogle Scholar
  58. 58.
    Chang C, Pelissier M, Durand P (1986) Phys Scr 34:394CrossRefGoogle Scholar
  59. 59.
    Heully J-L, Lindgren I, Lindroth E, Lundqvist S, Martensson-Pendrill A-M (1986) J Phys B 19:2799CrossRefGoogle Scholar
  60. 60.
    Snijders J (1996) Chem Phys Lett 252:51CrossRefGoogle Scholar
  61. 61.
    Lenthe EV, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597CrossRefGoogle Scholar
  62. 62.
    van Lenthe E, van Leeuwen R, Baerends EJ, Snijders JG (1996) Int J Quantum Chem 57:281CrossRefGoogle Scholar
  63. 63.
    Mitoraj MP, Michalak A, Ziegler T (2009) J Chem Theory Comput 5:962CrossRefGoogle Scholar
  64. 64.
    Frenking G, Wichmann K, Fröhlich N, Loschen C, Lein M, Frunzke J, Rayón VM (2003) Coord Chem Rev 55:238Google Scholar
  65. 65.
    Lein M, Szabó A, Kovács A, Frenking G (2003) Faraday Discuss 124:365CrossRefGoogle Scholar
  66. 66.
    Lein M, Frenking G (2005) The nature of the chemical bond in the light of an energy decomposition analysis. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory, applications of computational chemistry: the first 40 years. Elsevier, Amsterdam, pp 291–372Google Scholar
  67. 67.
    Frenking G (2001) J Organomet Chem 635:9CrossRefGoogle Scholar
  68. 68.
    Cases M, Frenking G, Duran M, Solà M (2002) Organometallics 21:4182CrossRefGoogle Scholar
  69. 69.
    Wiberg KB, Bailey WF, Petersson GA (2011) J Phys Chem A 115:12624CrossRefGoogle Scholar
  70. 70.
    Himmel D, Krossing I, Schnepf A (2014) Angew Chem Int Ed 53:370Google Scholar
  71. 71.
    Frenking G (2014) Angew Chem Int Ed 53:6040Google Scholar
  72. 72.
    Kutzelnigg W (1984) Angew Chem Int Ed Engl 23:272CrossRefGoogle Scholar
  73. 73.
    Esterhuysen C, Frenking G (2004) Theoret Chem Acc 111:381. Erratum (2005) 113:294Google Scholar
  74. 74.
    Jerabek P, Frenking G (2014) Theoret Chem Acc 133:1447CrossRefGoogle Scholar
  75. 75.
    Duncan JL (1978) Mol Phys 28:1177CrossRefGoogle Scholar
  76. 76.
    Beers Y, Klein GP, Kirchoff WH, Johnson DR (1972) J Mol Spectrosc 44:533CrossRefGoogle Scholar
  77. 77.
    Brown RD, Godfrey PD, McNaughton D, Taylor PR (1986) J Mol Spectrosc 120:292CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Computational Chemistry Group, Department of ChemistryUniversity of MauritiusRéduitMauritius
  2. 2.Fachbereich ChemiePhilipps-Universität MarburgMarburgGermany

Personalised recommendations