EMPIRE: a highly parallel semiempirical molecular orbital program: 1: self-consistent field calculations

  • Matthias Hennemann
  • Timothy Clark
Software Report

An adamantane nanocrystal that is easily calculated with EMPIRE


Density Matrix Initial Guess Molecular Electrostatic Potential Parallel Efficiency Standard Empire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Bavarian State Government as part of the KONWIHR II initiative and by the Bundesministerium für Bildung und Forschung as part of the hpCADD project, by the Deutsche Forschungsgemeinschaft as part of the Excellence Cluster Engineering of Advanced Materials and SFB 953 (Synthetic Carbon Allotropes) and by the Solar Technologies go Hybrid (SolTech) initiative of the Bavarian State Government.


  1. 1.
    Clark T, Stewart JJP (2011) MNDO-like semiempirical molecular orbital theory and its application to large systems. In: Reimers JJ (ed) Computational methods for large systems. Wiley, Chichester, Chap 8Google Scholar
  2. 2.
    Dewar MJS, Thiel W (1977) Ground states of molecules. 38. The MNDO method. Approximations and parameters. J Am Chem Soc 99:4899–4907CrossRefGoogle Scholar
  3. 3.
    Thiel W (1981) The MNDOC method, a correlated version of the MNDO model. J Am Chem Soc 103:1413–1420CrossRefGoogle Scholar
  4. 4.
    Thiel W, Voityuk AA (1992) Extension of the MNDO formalism to d-orbitals: integral approximations and preliminary numerical results. Theor Chim Acta 81:391–404, (1996) Erratum 93:315CrossRefGoogle Scholar
  5. 5.
    Thiel W, Voityuk AA (1994) Extension of MNDO to d orbitals: parameters and results for the halogens. Int J Quantum Chem 44:807–829CrossRefGoogle Scholar
  6. 6.
    Thiel W, Voityuk AA (1994) Extension of MNDO to d orbitals: parameters and results for silicon. J Mol Struct (THEOCHEM) 313:141–154CrossRefGoogle Scholar
  7. 7.
    Thiel W, Voityuk AA (1996) Extension of MNDO to d Orbitals: parameters and results for the second-row elements and for the zinc group. J Phys Chem 100:616–626CrossRefGoogle Scholar
  8. 8.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909CrossRefGoogle Scholar
  9. 9.
    Winget P, Horn AHC, Selçuki C, Martin B, Clark T (2004) AM1* parameters for phosphorus, sulfur and chlorine. J Mol Model 9:408–414CrossRefGoogle Scholar
  10. 10.
    Winget P, Clark T (2005) AM1* parameters for aluminum, silicon, titanium and zirconium. J Mol Model 11:439–456CrossRefGoogle Scholar
  11. 11.
    Kayi H, Clark T (2007) AM1* parameters for copper and zinc. J Mol Model 13(9):965–979CrossRefGoogle Scholar
  12. 12.
    Kayi H, Clark T (2009) AM1* parameters for bromine and iodine. J Mol Model 15:295–308CrossRefGoogle Scholar
  13. 13.
    Kayi H, Clark T (2009) AM1* parameters for vanadium and chromium. J Mol Model 15:1253–1269CrossRefGoogle Scholar
  14. 14.
    Kayi H, Clark T (2010) AM1* parameters for cobalt and nickel. J Mol Model 16:29–47CrossRefGoogle Scholar
  15. 15.
    Rocha GB, Freire RO, Simas AM, Stewart JJP (2006) RM1: a reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J Comput Chem 27:1101–1111CrossRefGoogle Scholar
  16. 16.
    Stewart JJP (1989) Optimization of parameters for semiempirical methods I. Method. J Comput Chem 10:209–220CrossRefGoogle Scholar
  17. 17.
    Stewart JJP (1989) Optimization of parameters for semiempirical methods II. Applications. J Comput Chem 10:221–264CrossRefGoogle Scholar
  18. 18.
    Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213CrossRefGoogle Scholar
  19. 19.
    Kolb M, Thiel W (1993) Beyond the MNDO model: methodical considerations and numerical results. J Comput Chem 14:775–789CrossRefGoogle Scholar
  20. 20.
    Weber W, Thiel W (2000) Orthogonalization corrections for semiempirical methods. Theor Chem Accounts 103:495–506CrossRefGoogle Scholar
  21. 21.
    Scholten M (2003) Semiempirische Verfahren mit Orthogonalisierungskorrekturen: Die OM3 Methode. PhD thesis, Heinrich-Heine-Universität, DüsseldorfGoogle Scholar
  22. 22.
    Yang W (1991) Direct calculation of electron density in density-functional theory. Phys Rev Lett 66:1438–1441CrossRefGoogle Scholar
  23. 23.
    Dixon SL, Merz KM Jr (1997) Fast, accurate semiempirical molecular orbital calculations for macromolecules. J Chem Phys 107:879–893CrossRefGoogle Scholar
  24. 24.
    Ababoua A, van der Vaart A, Gogonea V, Merz KM Jr (2007) Interaction energy decomposition in protein–protein association: a quantum mechanical study of barnase–barstar complex. Biophys Chem 125:221–236CrossRefGoogle Scholar
  25. 25.
    Stewart JJP (1996) Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations. Int J Quantum Chem 58:133–146CrossRefGoogle Scholar
  26. 26.
    Cuevas JC, Scheer E (2010) Molecular electronics: an introduction to theory and experiment (World Scientific Series in Nanotechnology and Nanoscience). World Scientific, SingaporeGoogle Scholar
  27. 27.
    Stewart JJP (2009) Application of the PM6 method to modeling proteins. J Mol Model 15:765–805CrossRefGoogle Scholar
  28. 28.
    Thiel W, Green DG (1995) The MNDO94 code: parallelization of a semiempirical quantum-chemical program. In: Clementi E, Corongiu G (eds) Methods and techniques in computational chemistry: METECC-95. STEF, Cagliari, pp 141–165Google Scholar
  29. 29.
    Vandevondele J, Borštnik U, Hutter J (2012) Linear scaling self-consistent field calculations with millions of atoms in the condensed phase. J Chem Theory Comput 8:3565–3573CrossRefGoogle Scholar
  30. 30.
    Bauer T, Schmaltz T, Lenz T, Halik M, Meyer B, Clark T (2013) Phosphonate- and carboxylate-based self-assembled monolayers for organic devices: a theoretical study of surface binding on aluminum oxide with experimental support. ACS Appl Mater Interfaces 5:6073–6080. doi: 10.1021/am4008374 CrossRefGoogle Scholar
  31. 31.
    Etschel S, Waterloo A, Margraf JT, Amin AY, Hampel F, Jäger C, Clark T, Halik M, Tykwinski RR (2013) An unsymmetrical pentacene derivative with ambipolar behavior in organic thin-film transistors. Chem Commun (Accepted). doi: 10.1039/C3CC43270J
  32. 32.
    Clark T, Alex A, Beck B, Burckhardt F, Chandrasekhar J, Gedeck P, Horn A, Hutter M, Martin B, Rauhut G, Sauer W, Schindler T, Steinke T (2007) VAMP 10.0, available from Accelrys Inc, San Diego, CA , USA. Erlangen, GermanyGoogle Scholar
  33. 33.
    (2011) Intel® Math Kernel Library 10.3. Intel Corporation, Santa Clara, CA; Accessed 19 April 2012)
  34. 34.
    Pulay P (1980) Convergence acceleration of iterative sequences. The case of SCF iteration. Chem Phys Lett 73:393–398CrossRefGoogle Scholar
  35. 35.
    Pulay P (1982) Improved SCF convergence acceleration. J Comput Chem 3:556–560CrossRefGoogle Scholar
  36. 36.
    Badziag P, Solms F (1988) An improved SCF iteration scheme. Comput Chem 12:233–236CrossRefGoogle Scholar
  37. 37.
    Saunders VR, Hillier IH (1973) A “Level–Shifting” method for converging closed shell Hartree–Fock wave functions. Int J Quantum Chem 7:699–705CrossRefGoogle Scholar
  38. 38.
    Ridley J, Zerner M (1973) An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines. Theor Chim Acta 32:111–134CrossRefGoogle Scholar
  39. 39.
    Zerner M (1991) Semiempirical molecular orbital methods. Reviews. In: Lipkowitz KB, Boyd DB (eds) Computational chemistry, Vol 2. VCH, New York, pp 313–365Google Scholar
  40. 40.
    Stewart JJP, Császár P, Pulay P (1982) Fast semiempirical calculations. J Comput Chem 3:227–228CrossRefGoogle Scholar
  41. 41.
    Wick CR, Hennemann M, Stewart JJP, Clark T (2014) Self-consistent field convergence for proteins: a comparison of full and localized-molecular-orbital schemes. J Mol Model 20:2159–2164. doi: 10.1007/s00894-014-2159-y CrossRefGoogle Scholar
  42. 42.
    Stewart JJP MOPAC (2009) Stewart computational chemistry, Colorado Springs, CO, USA ( Accessed 12th May 2014
  43. 43.
    (2013) Materials Studio 6.1. Accelrys Inc, San Diego, USA ( Accessed 12th May 2014
  44. 44.
  45. 45.
    HDF5 File Format Specification Version 2.0 ( Accessed 12th May 2014
  46. 46.
    Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Average local ionization energies on the molecular-surfaces of aromatic systems as guides to chemical-reactivity. Can J Chem 68:1440–1443CrossRefGoogle Scholar
  47. 47.
    Politzer P, Murray JS, Bulat FA (2010) Average local ionization energy: a review. J Mol Model 16:1731–1742CrossRefGoogle Scholar
  48. 48.
    Ehresmann B, Martin B, Horn AHC, Clark T (2003) Local molecular properties and their use in predicting reactivity. J Mol Model 9:342–347CrossRefGoogle Scholar
  49. 49.
    Clark T (2010) The local electron affinity for non-minimal basis sets. J Mol Model 16:1231–1238. doi: 10.1007/s00894-009-0607-x CrossRefGoogle Scholar
  50. 50.
    Jäger CM, Schmaltz T, Novak M, Khassanov A, Vorobiev A, Hennemann M, Krause A, Dietrich H, Zahn D, Hirsch A, Halik M, Clark T (2013) Improving the charge transport in self-assembled monolayer field-effect transistors—from theory to devices. J Am Chem Soc 135:4893–4900. doi: 10.1021/ja401320n CrossRefGoogle Scholar
  51. 51.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296CrossRefGoogle Scholar
  52. 52.
    Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189CrossRefGoogle Scholar
  53. 53.
    Metrangolo P, Meyer F, Pilati T, Proserpio DM, Resnati G (2008) Dendrimeric tectons in halogen bonding-based crystal engineering. Cryst Growth Des 8:654–659CrossRefGoogle Scholar
  54. 54.
  55. 55.

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Computer-Chemie-Centrum der Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations