Indigo adsorption on a silicate surface: a theoretical density functional study

  • Cristina Iuga
  • C. Ignacio Sainz-Díaz
  • Elba Ortíz
  • Annik Vivier-Bunge
Original Paper
Part of the following topical collections:
  1. Topical Collection QUITEL 2013

Abstract

The applicability of naturally available low-cost and eco-friendly adsorbent materials for the removal of hazardous dyes from aqueous waste is of increasing environmental interest. Among the adsorption treatments available, clays seem to be economically attractive due to their abundance and adsorption capabilities. Indeed, many ancient coloring materials utilized clays mixed with natural dyes (e.g., indigo in Maya Blue). In this work, we performed a quantum-mechanical theoretical study of the adsorption of the indigo molecule onto the (001) surface of a phyllosilicate. Different methods and approaches were applied and compared. We found that the presence of a tetrahedral charge and a sodium counterion significantly increased the adsorption energy of the indigo molecule. The vibrational spectrum of the dye–surface system was also studied, and some interesting shifts in the frequencies of the main vibrational modes of indigo due to its interaction with the surface of the clay mineral were identified.

Figure

Indigo molecule adsorbed on a silicate surface

Keywords

Indigo Silicate surface Adsorption Vibrational spectroscopy Theoretical study 

References

  1. 1.
    Attia AA, Girgis BS, Fathy NA (2008) Dyes Pigments 76:282CrossRefGoogle Scholar
  2. 2.
    Namasivayam C, Kavita D (2002) Dyes Pigments 54:47CrossRefGoogle Scholar
  3. 3.
    Goyal M, Singh S, Bansal RC (2004) Carbon Sci 5:170Google Scholar
  4. 4.
    Garg VK, Amita M, Kumar R, Gupta R (2004) Dyes Pigments 63:243CrossRefGoogle Scholar
  5. 5.
    Allen SJ, Gan Q, Matthews R, Johnson PA (2003) Bioresour Technol 88:143CrossRefGoogle Scholar
  6. 6.
    Yu Y, Zhuang YY, Wang ZH, Qiu MQ (2004) Chemosphere 54:425CrossRefGoogle Scholar
  7. 7.
    Kadirvelu K, Kavipriya M, Karthika C, Radhika M, Vennilamani N, Pattabhi S (2003) Bioresour Technol 87:129CrossRefGoogle Scholar
  8. 8.
    Gürses A, Karaca S, Dogar C, Bayrak R, Acikyildiz M, Yalcin M (2004) J Colloid Interface Sci 269:310CrossRefGoogle Scholar
  9. 9.
    Robinson T, McMullan G, Marchant R, Nigam P (2001) Bioresour Technol 77(3):247CrossRefGoogle Scholar
  10. 10.
    Sharma P, Kaur H, Sharma M, Sahore V (2011) Environ Monit Assess 183:151CrossRefGoogle Scholar
  11. 11.
    Han RP, Wnag YF, Han P, Yang J, Lu YS (2006) J Hazard Mater 137:550CrossRefGoogle Scholar
  12. 12.
    Aksu Z (2005) Process Biochem 40:997CrossRefGoogle Scholar
  13. 13.
    Weng C, Pan Y (2006) Colloids Surf A 274:154CrossRefGoogle Scholar
  14. 14.
    Rozada F, Calvo LF, Garcia AI, Martin-Villacorta J, Otero M (2003) Bioresour Technol 87:221CrossRefGoogle Scholar
  15. 15.
    Kumar KV, Kumrana A (2005) Biochem Eng J 27:83CrossRefGoogle Scholar
  16. 16.
    Kumar KV, Porkodi K (2006) J Hazard Mater 138:633CrossRefGoogle Scholar
  17. 17.
    Acemioglu B (2005) Chem Eng J 106:73CrossRefGoogle Scholar
  18. 18.
    Shukla A, Zhang Y, Dubey P, Margrave JL, Shukla SS (2002) J Hazard Mater B95:137CrossRefGoogle Scholar
  19. 19.
    Ho Y, Chiu W, Wang C (2005) Bioresour Technol 96:1285CrossRefGoogle Scholar
  20. 20.
    Senthilkumaar S, Varadarajan PR, Porkodi K, Subbhuraam CV (2005) J Colloid Interface Sci 284:78CrossRefGoogle Scholar
  21. 21.
    McKay G, El-Geundi M, Nassar MM (1987) Water Res 21:1513CrossRefGoogle Scholar
  22. 22.
    Ghoreishi SM, Haghighi R (2003) Chem Eng J 95:163CrossRefGoogle Scholar
  23. 23.
    Molina-Montes E, Timón V, Hernández-Laguna A, Sainz-Díaz CI (2008) Geochim Cosmochim Acta 72:3929CrossRefGoogle Scholar
  24. 24.
    Timón V, Sainz-Díaz CI, Botella V, Hernández-Laguna A (2003) Am Mineral 88:1788Google Scholar
  25. 25.
    Sauer J, Ugliengo P, Garrone E, Saunders VR (1994) Chem Rev 94:2095CrossRefGoogle Scholar
  26. 26.
    Molina-Montes ME, Donadio D, Hernández-Laguna A, Sainz-Díaz CI, Parrinello M (2008) J Phys Chem C 112:7051CrossRefGoogle Scholar
  27. 27.
    Sainz-Díaz CI, Escamilla-Roa E, Hernández-Laguna A (2005) Am Mineral 90:1827CrossRefGoogle Scholar
  28. 28.
    Ortega-Castro J, Hernández-Haro N, Hernández-Laguna A, Sainz-Díaz CI (2008) Clay Miner 43:351CrossRefGoogle Scholar
  29. 29.
    Meunier A (2005) Clays. Springer, BerlinGoogle Scholar
  30. 30.
    Hernández-Laguna A, Escamilla-Roa E, Timón V, Dove MT, Sainz-Díaz CI (2006) Phys Chem Miner 33:655CrossRefGoogle Scholar
  31. 31.
    Iuga C, Vivier-Bunge A, Hernández-Laguna A, Sainz-Díaz CI (2008) J Phys Chem C 11:4590CrossRefGoogle Scholar
  32. 32.
    Iuga C, Esquivel Olea R, Vivier-Bunge A (2008) J Mex Chem Soc 51:36Google Scholar
  33. 33.
    Iuga C, Sainz-Díaz CI, Vivier-Bunge A (2010) Geochim Cosmochim Acta 74:3587CrossRefGoogle Scholar
  34. 34.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian, Inc., WallingfordGoogle Scholar
  35. 35.
    Varetto U (2009) MOLEKEL, version 5.4. Swiss National Supercomputing Centre, LuganoGoogle Scholar
  36. 36.
    Delley B (2000) J Chem Phys 113:7756CrossRefGoogle Scholar
  37. 37.
    McNellis ER, Meyer J, Reuter K (2009) Phys Rev B 80:205414CrossRefGoogle Scholar
  38. 38.
    Accelrys, Inc. (2009) Materials Studio. Accelrys, Inc., San DiegoGoogle Scholar
  39. 39.
    Iuga C, Sainz-Díaz CI, Vivier-Bunge A (2012) J Phys Chem C 116:2904CrossRefGoogle Scholar
  40. 40.
    Susse P, Steins M, Kupcik V (1988) Z Krist 184:269CrossRefGoogle Scholar
  41. 41.
    Wardle R, Brindley GW (1972) Am Mineral 57:732Google Scholar
  42. 42.
    Sainz-Díaz CI, Palin EJ, Hernández-Laguna A, Dove MT (2003) Phys Chem Miner 30:382CrossRefGoogle Scholar
  43. 43.
    Ortega-Castro J, Hernández-Haro N, Muñoz-Santiburcio D, Sainz-Díaz CI, Hernández-Laguna A (2008) J Mol Struct THEOCHEM 912:82CrossRefGoogle Scholar
  44. 44.
    Martos-Villa R, Francisco-Márquez M, Mata MP, Sainz-Díaz CI (2013) J Mol Graph Model 44:253CrossRefGoogle Scholar
  45. 45.
    Tsiantos C, Tsampodimou M, Kacandes GH, Sánchez del Río M, Gionis V, Chryssikos GD (2012) J Mater Sci 47:3415CrossRefGoogle Scholar
  46. 46.
    Sánchez del Río M, Picquart M, Haro-Poniatowski E, van Elslande E, Uc VH (2006) J Raman Spectrosc 37:1046Google Scholar
  47. 47.
    Amat A, Rosi F, Miliani C, Sgamellotti A, Fantacci S (2011) J Mol Struct 993:43CrossRefGoogle Scholar
  48. 48.
    Baran A, Fielder A, Schulz H, Baranska M (2010) Anal Methods 2:1372CrossRefGoogle Scholar
  49. 49.
    Doménech A, Doménech-Carbó MT, Edwards HGM (2010) J Raman Spectrosc 42:86CrossRefGoogle Scholar
  50. 50.
    Giustetto R, Seenivasan K, Bonino F, Ricchiardi G, Bordiga S, Chierotti MR, Gobetto R (2011) J Phys Chem C 115(41):16764CrossRefGoogle Scholar
  51. 51.
    Tatsch E, Schradder B (1995) J Raman Spectrosc 26:467CrossRefGoogle Scholar
  52. 52.
    Sánchez del Río M, Martinetto P, Somogyi A, Reyes-Valerio C, Dooryhée E, Peltier N, Alianelli L, Moignard B, Pichon L, Calligaro T, Dran JC (2004) Spectrochim Acta B 59:1619CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Cristina Iuga
    • 1
  • C. Ignacio Sainz-Díaz
    • 2
  • Elba Ortíz
    • 3
  • Annik Vivier-Bunge
    • 4
  1. 1.Departamento de Sistemas BiológicosUniversidad Autónoma Metropolitana-XochimilcoMéxicoMéxico
  2. 2.Instituto Andaluz de Ciencias de la TierraCSIC-Universidad de GranadaGranadaSpain
  3. 3.Departamento de Ciencias BásicasUniversidad Autónoma Metropolitana-AzcapotzalcoMéxicoMéxico
  4. 4.Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaMéxicoMéxico

Personalised recommendations