Skip to main content
Log in

Alternative analytical forms to model diatomic systems based on the deformed exponential function

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Using a deformed exponential function and the molecular-orbital theory for the simplest molecular ion, two new analytical functions are proposed to represent the potential energy of ground-state diatomic systems. The quality of these new forms was tested by fitting the ab initio electronic energies of the system LiH, LiNa, NaH, RbH, KH, H2, Li2, K2, H +2 , BeH+ and Li +2 . From these fits, it was verified that these new proposals are able to adequately describe homonuclear, heteronuclear and cationic diatomic systems with good accuracy. Vibrational spectroscopic constant results obtained from these two proposals are in good agreement with experimental data.

Use of the deformed exponentialfunction to improve the accuracyof potential energy curves

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a–c
Fig. 3a–c
Fig. 4a–c
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grisenti RE, Schöllkopf W, Toennies JP, Hegerfeldt GC, Köhler T, Stoll M (2000) Phys Rev Lett 85:2284

    Article  CAS  Google Scholar 

  2. Winn JS (1981) Acc Chem Res 14:341

    Article  CAS  Google Scholar 

  3. Koperski J (2003) Van der Waals complexes in supersonic beams. Wiley-VCH, Weinheim

    Google Scholar 

  4. Partridge H, Stallcop JR, Levin E (2001) J Chem Phys 115:6471

    Article  CAS  Google Scholar 

  5. Tang KT, Toennies JP, Yiu CL (1995) Phys Rev Lett 74:1546

    Article  CAS  Google Scholar 

  6. Tang KT, Toennies JP, Yiu CL (1998) Int Rev Phys Chem 17:363

    Article  CAS  Google Scholar 

  7. Kleinekathöfer U, Lewerenz M, Mladenović M (1999) Phys Rev Lett 83:4717

    Article  Google Scholar 

  8. Esry BD, Greene CH, Burke JP Jr (1999) Phys Rev Lett 83:1751

    Article  CAS  Google Scholar 

  9. Doye JPK, Meyer L (2000) Phys Rev Lett 95:063401

    Article  Google Scholar 

  10. Mathur D (1993) Phys Rep 225:193

    Article  CAS  Google Scholar 

  11. Price ST (2003) Phys Chem Chem Phys 5:1717

    Article  CAS  Google Scholar 

  12. Steele D, Lippincott ER, Vanderslice JT (1962) Rev Mod Phys 34:239

    Article  CAS  Google Scholar 

  13. Koperski J (2002) Phys Rep 369:177

    Article  CAS  Google Scholar 

  14. Zavitsas AA (1991) J Am Chem Soc 113:4755

    Article  CAS  Google Scholar 

  15. Wei H (1990) Phys Rev A 42:2524

    Article  Google Scholar 

  16. Cvetko D, Lausi A, Morgante A, Tommasini F, Cortona P, Dondi MG (1994) J Chem Phys 100:2052

    Article  CAS  Google Scholar 

  17. Pirani F, Brizi S, Roncaratti LF, Casavecchia P, Cappelletti D, Vecchiocattivi F (2008) Phys Chem Chem Phys 10:5489

    Article  CAS  Google Scholar 

  18. Alberti M, Castro A, Laganà A, Moix M, Pirani F, Cappelletti D, Liuti G (2005) J Phys Chem A 109:2906

    Article  CAS  Google Scholar 

  19. Pirani F, Giulivi A, Cappelletti D, Aquilanti V (2000) Mol Phys 98:1749

    Article  CAS  Google Scholar 

  20. Bellert D, Breckenridge WH (2002) Chem Rev 102:1595

    Article  CAS  Google Scholar 

  21. Cahill K, Parsegian VA (2004) J Chem Phys 121:10839

    Article  CAS  Google Scholar 

  22. Esteves CS, de Oliveira HCB, Ribeiro L, Gargano R, Mundim KC (2006) Chem Phys Lett 427:10

    Article  CAS  Google Scholar 

  23. Garcia E, Laganà A (1985) Mol Phys 55:621

    Article  Google Scholar 

  24. Rui-Hua X, Gong J (2005) Phys Rev Lett 95:263

    Google Scholar 

  25. Salviano LR, Esteves CS, de Oliveira HCB, Mundim KC, Ribeiro L, Gargano R (2010) Physica A 389:3604

    Article  CAS  Google Scholar 

  26. Mundim KC (2005) Physica A 350:338

    Article  CAS  Google Scholar 

  27. de Oliveira HCB, Esteves CS, Gargano R, do Nascimento MAC, Malbouisson LAC, Mundim KC (2008) Int J Quantum Chem 108:2540

    Article  Google Scholar 

  28. de Oliveira HCB, Rangel FC, Esteves CS, Vieira FMC, Mundim KC (2009) J Phys Chem A 113:14691

    Article  Google Scholar 

  29. Rangel FC, de Oliveira HCB, Montel ALB, Mundim KC (2010) Physica A 389:5208

    Article  CAS  Google Scholar 

  30. Silva VHC, Aquilanti V, de Oliveira HCB, Mundim KC (2013) Chem Phys Lett 590:201

    Article  CAS  Google Scholar 

  31. Aquilanti V, Mundim KC, Elango M, Kleijn S, Kasai T (2010) Chem Phys Lett 498:209

    Article  CAS  Google Scholar 

  32. Aquilanti V, Mundim KC, Cavalli S, De Fazio D, Aguilar A, Lucas JM (2012) Chem Phys 398:186

    Article  CAS  Google Scholar 

  33. Machado DFS, Silva VHC, Esteves CS, Gargano R, Macedo LGM, Mundim KC, de Oliveira HCB (2012) J Mol Model 18:4343

    Article  CAS  Google Scholar 

  34. Rangel FC, Mamiya AA, de Oliveira HCB, Vieira FMC, Mundim KC (2013) J Phys Chem A 117:6622

    Article  CAS  Google Scholar 

  35. Borges EP (1998) J Phys A 31:5281

    Article  Google Scholar 

  36. Tsallis C (1988) J Stat Phys 52:479

    Article  Google Scholar 

  37. Borges EP (2004) Physica A Stat Mech Appl 340:95

    Article  Google Scholar 

  38. Lenzi EK, Anteneodo C, Borland L (2001) Phys Rev E 63:051109

    Article  CAS  Google Scholar 

  39. Abe S, Okamoto Y (2001) Lecture notes in physics—nonextensive statistical mechanics and its applications, vol 560. Springer, Tokyo

    Book  Google Scholar 

  40. Vila HVR, Luciano AL, Ribeiro Junior LA, Martins JBL, e Silva GM, Gargano R (2012) J Mol Spect 273:29

    Google Scholar 

  41. Neto JJS, Costa LS (1998) Braz J Phys 111:28

    Google Scholar 

  42. Radzig AA, Smirnov BM (1985) Reference data on atoms, molecules and ions. Springer, Berlin

    Book  Google Scholar 

  43. Murrell JN, Farantos SC, Huxley P, Varandas AJC (1984) Molecular potencial energy functions. Wiley, Chichester

    Google Scholar 

  44. Goodisman J (1973) Diatomic interaction potential theory, vol 1. Academic, New York

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the following Brazilian Research Councils: National Council for Scientific and Technological Development (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF) and Fundações de Empreendimentos Científicos e Tecnológicos (FINATEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Gargano.

Additional information

This paper belongs to Topical Collection Brazilian Symposium of Theoretical Chemistry (SBQT2013)

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 5566 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Fonsêca, J.E., de Oliveira, H.C.B., da Cunha, W.F. et al. Alternative analytical forms to model diatomic systems based on the deformed exponential function. J Mol Model 20, 2297 (2014). https://doi.org/10.1007/s00894-014-2297-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2297-2

Keywords

Navigation