Advertisement

Deamination features of 5-hydroxymethylcytosine, a radical and enzymatic DNA oxidation product

  • André Grand
  • Nelly Jorge
  • Christophe Morell
  • Jean Cadet
  • Leif A. ErikssonEmail author
Original Paper
Part of the following topical collections:
  1. Topical Collection QUITEL 2013

Abstract

The 5-methylcytosine derivative 5-hydroxymethylcytosine (5hmCyt), which is generated via enzymatic oxidation, is sometimes referred to as the sixth nucleobase due to its widespread presence in the DNA of brain and embryonic stem cells. In this study, we used density functional based methods and reactivity indices from conceptual DFT to explore the mechanism and key features of the hydrolytic deamination of 5hmCyt. The data obtained are used to compare and contrast this deamination reaction with those of other cytosine derivatives. The deamination process for 5hmCyt is similar to the corresponding processes for other unsaturated derivatives in that the amino form is the reactive one and water addition is the rate-limiting step. However, several differences due to the rotameric asymmetry of the current system are also noted.

Figure

Exploration of the spontaneous deamination of 5-hydroxymethylcytosine using computational chemistry

Keywords

5-Hydroxymethylcytosine Radical oxidation Deamination Enzymatic DNA oxidation Mutation 

Notes

Acknowledgments

The Faculty of Science at the University of Gothenburg and the Swedish Science Research Council (VR) are gratefully acknowledged for financial support [LAE]. AG and CM thank INSERM for financial support. The research benefited from the support of Aviesan ITMO Cancer within the “Cancer Plan 2009–2013” and the application of Action 3.3. AG furthermore acknowledges support from the Universidad Autonoma de Chile.

References

  1. 1.
    Reik VW, Dean WL (2001) Science 293:1089CrossRefGoogle Scholar
  2. 2.
    Chen ZX, Riggs AD (2011) J Biol Chem 286:18347CrossRefGoogle Scholar
  3. 3.
    Law JA, Jacobsen SE (2010) Nat Rev Genet 11:204CrossRefGoogle Scholar
  4. 4.
    Bienvenu C, Cadet J (1996) J Org Chem 61:2632CrossRefGoogle Scholar
  5. 5.
    Wagner JR, Cadet J (2010) Acc Chem Res 43:564CrossRefGoogle Scholar
  6. 6.
    Branko MM, Ficz G, Reik W (2012) Nat Rev Genet 13:7Google Scholar
  7. 7.
    Kriukienè E, Liutkeviciute Z, Klimasauskaas S (2012) Chem Soc Rev 41:6916CrossRefGoogle Scholar
  8. 8.
    Masuda T, Shinohara H, Kondo M (1975) J Radiat Res 16:153CrossRefGoogle Scholar
  9. 9.
    Close DM (2003) J Phys Chem B 107:864CrossRefGoogle Scholar
  10. 10.
    Tanabe K, Yamada H, Nishimoto S (2007) J Am Chem Soc 129:8034CrossRefGoogle Scholar
  11. 11.
    Bienvenu C, Wagner JR, Cadet J (1996) J Am Chem Soc 118:11406CrossRefGoogle Scholar
  12. 12.
    Yamada H, Tanabe K, Ito T (2008) Chem Eur J 14:10453CrossRefGoogle Scholar
  13. 13.
    Shao J, Huang C-H, Kalyanaraman B, Zhu B-Z (2013) Free Rad Biol Med 60:177CrossRefGoogle Scholar
  14. 14.
    Cadet J, Douki T, Ravanat J-L (2010) Free Rad Biol Med 49:9CrossRefGoogle Scholar
  15. 15.
    Münzel M, Globisch D, Brück T, Wagner M, Welzmiller V, Michalakis S, Müller M, Biel M, Carell T (2011) Angew Chem Int Ed Engl 49:5375CrossRefGoogle Scholar
  16. 16.
    Kryaucionis S, Heintz N (2009) Science 324:929CrossRefGoogle Scholar
  17. 17.
    Taliliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iye LM, Liu DR, Aravind L, Rao A (2009) Science 324:930CrossRefGoogle Scholar
  18. 18.
    Penn NW, Suwalski R, O’Riley C, Bojanowski K, Yura R (1979) Biochem J 126:781Google Scholar
  19. 19.
    Münzel M, Globisch D, Carell T (2011) Angew Chem Int Ed Engl 50:6460CrossRefGoogle Scholar
  20. 20.
    Jurkowski TP, Jeltsch A (2011) ChemBioChem 12:2543CrossRefGoogle Scholar
  21. 21.
    Nabel CS, Manning SA, Kohli RM (2012) ACS Chem Biol 12:20CrossRefGoogle Scholar
  22. 22.
    Freudenberg JM, Ghosh S, Lackford BL, Yellaboina S, Zheng X, Li R, Cuddapah S, Wade PA, Hu G, Jothi R (2012) Nucleic Acids Res 40:3364CrossRefGoogle Scholar
  23. 23.
    Pérez C, Martinez-Calle N, Martin-Subero JL, Segura V, Delabesse E, Fernandez-Mercado M, Garate L, Alvarez S, Rifon J, Varea S, Boultwoo J, Wainscoat JS, Cigudosa JC, Calasan MJ, Cross NCP, Prósper F, Agirre X (2012) PLos One e31605Google Scholar
  24. 24.
    Wagner M, Eigenbrod S, Widmann D, Münzel M, Müller M, Pfaffeneder T, Hackner B, Feiden W, Schüller U, Carell T, Kretzschmar HA (2012) Int J Cancer 131:1577CrossRefGoogle Scholar
  25. 25.
    Fu Y, He C (2012) Curr Opin Chem Biol 16:516Google Scholar
  26. 26.
    Iqbal K, Jin S-G, Szabo PE (2011) Proc Natl Acad Sci USA 108:3642Google Scholar
  27. 27.
    Loenarz C, Schofield CJ (2011) Trends Biochem Sci 36:7CrossRefGoogle Scholar
  28. 28.
    Pfaffeneder T, Hackner B, Truβ M, Münzel M, Müller M, Deiml CA, Hagemeier C, Carell T (2011) Angew Chem Int Ed 50:7008CrossRefGoogle Scholar
  29. 29.
    Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Science 333:1300CrossRefGoogle Scholar
  30. 30.
    He YF, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Dai X, Song C-X, Zhang K, He C, Xu G-L (2011) Science 333:1303Google Scholar
  31. 31.
    Maiti A, Drohat AC (2011) J Biol Chem 286:35334CrossRefGoogle Scholar
  32. 32.
    Hashimoto H, Liu Y, Upadhyay CY, Howerton SB, Vertino PM, Zhang X, Cheng X (2012) Nucleic Acids Res 40:4841Google Scholar
  33. 33.
    Boorstein RJ, Cummings A Jr, Marenstein DR, Chan MK, Ma Y, Neubert TA, Brown SM, Teebor GW (2001) J Biol Chem 276:41991CrossRefGoogle Scholar
  34. 34.
    Hendric B, Hardeland U, Ng HH, Jiricny J, Bird A (1999) Nature 401:301CrossRefGoogle Scholar
  35. 35.
    Schiesser S, Pfaffeneder T, Sadeghian K, Hackner B, Steigenberger B, Schröder AS, Steinbacher J, Kashiwazaki G, Höfner G, Wanner KT, Ochsenfeld C, Carell T (2013) J Am Chem Soc 135:14593CrossRefGoogle Scholar
  36. 36.
    Labet V, Grand A, Morell C, Cadet J, Eriksson LA (2008) Theor Chem Acc 120:429CrossRefGoogle Scholar
  37. 37.
    Labet V, Morell C, Grand A, Toro-Labbé A (2008) J Phys Chem A 112:11487CrossRefGoogle Scholar
  38. 38.
    Labet V, Morell C, Cadet J, Eriksson LA, Gran A (2009) J Phys Chem A 113:2524CrossRefGoogle Scholar
  39. 39.
    Labet V, Morell C, Douki T, Cadet J, Eriksson LA, Grand A (2010) J Phys Chem 114:1826CrossRefGoogle Scholar
  40. 40.
    Grand A, Cadet J, Eriksson LA, Labet V, Jorge N, Schreiber ML, Douki T, Morell C (2012) Theor Chem Acc 131:1187CrossRefGoogle Scholar
  41. 41.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, rev. C.02, Gaussian, Inc., WallingfordGoogle Scholar
  42. 42.
    Becke AD (1993) J Chem Phys 9:5648CrossRefGoogle Scholar
  43. 43.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  44. 44.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639CrossRefGoogle Scholar
  45. 45.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650CrossRefGoogle Scholar
  46. 46.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265CrossRefGoogle Scholar
  47. 47.
    Cancès MT, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032CrossRefGoogle Scholar
  48. 48.
    Mennucci B, Tomasi J (1997) J Chem Phys 106:5151CrossRefGoogle Scholar
  49. 49.
    Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43CrossRefGoogle Scholar
  50. 50.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  51. 51.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793CrossRefGoogle Scholar
  52. 52.
    Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065CrossRefGoogle Scholar
  53. 53.
    Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101:524CrossRefGoogle Scholar
  54. 54.
    Chermette H (1999) J Comp Chem 20:129CrossRefGoogle Scholar
  55. 55.
    Parr RG, Yang W (1995) Annu Rev Phys Chem 46:701CrossRefGoogle Scholar
  56. 56.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801CrossRefGoogle Scholar
  57. 57.
    Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512CrossRefGoogle Scholar
  58. 58.
    Parr RG, Szentpaly L, Li SB (1999) J Am Chem Soc 121:1922CrossRefGoogle Scholar
  59. 59.
    Morell C, Labet V, Grand A, Chermette H (2009) Phys Chem Chem Phys 11:3417CrossRefGoogle Scholar
  60. 60.
    Chattaraj PK, Maiti B, Sarkar U (2003) J Phys Chem A 107:4973CrossRefGoogle Scholar
  61. 61.
    Parr RG, Yang W (1984) J Am Chem Soc 106:4049CrossRefGoogle Scholar
  62. 62.
    Ayers PW, Levy M (2000) Theor Chem Acc 103:353CrossRefGoogle Scholar
  63. 63.
    Padmanabhan J, Parthasarathi R, Elango M, Subramanian V, Krishnamoorthy BS, Gutierrez-Oliva S, Toro-Labbé A, Roy DR, Chattaraj PK (2007) J Phys Chem A 111:9130CrossRefGoogle Scholar
  64. 64.
    Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205CrossRefGoogle Scholar
  65. 65.
    Morell C, Grand A, Toro-Labbé A (2006) Chem Phys Let 425:342CrossRefGoogle Scholar
  66. 66.
    Morell C, Ayers PW, Grand A, Chermette H (2011) Phys Chem Chem Phys 13:9601CrossRefGoogle Scholar
  67. 67.
    Cardenas C, Rabi N, Ayers P, Morell C, Jaramillo P, Fuentealba P (2009) J Phys Chem A 113:8860CrossRefGoogle Scholar
  68. 68.
    Ayers PW, Morell C, De Proft F, Geerlings P (2007) Chem Eur J 13:8240CrossRefGoogle Scholar
  69. 69.
    Breneman CM, Wiberg KB (1990) J Comp Chem 11:361CrossRefGoogle Scholar
  70. 70.
    Koopmans TA (1934) Physica 1:104CrossRefGoogle Scholar
  71. 71.
    Parr RG, Zhou Z (1993) Acc Chem Res 26:256CrossRefGoogle Scholar
  72. 72.
    Lindahl T, Nyberg B (1974) Biochemistry 13:3405CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • André Grand
    • 1
    • 2
  • Nelly Jorge
    • 3
  • Christophe Morell
    • 4
  • Jean Cadet
    • 1
  • Leif A. Eriksson
    • 5
    Email author
  1. 1.Laboratoire “Lésions des Acides Nucléiques”, INAC/SCIB - UMR-E n°3 CEA-UJF, CEA GrenobleGrenoble cedex 9France
  2. 2.Investigador Associado Facultad de Cs. De la SaludUniversitad Autonoma de ChileCarlos Antunez, ProvidenciaChile
  3. 3.Área Fisicoquímica, Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNECorrientesArgentina
  4. 4.Université de Lyon1, ISA/Laboratoire des Sciences Analytiques UMR 5180Villeurbanne CedexFrance
  5. 5.Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden

Personalised recommendations