Partly saturated polyacene structures: a theoretical study

  • Muammar El Khatib
  • Stefano Evangelisti
  • Thierry Leininger
  • Gian Luigi Bendazzoli
Original Paper
Part of the following topical collections:
  1. Topical Collection 9th European Conference on Computational Chemistry (EuCo-CC9)


Planar molecular edifices obtained by joining polyacene fragments (polyacene stripes) are investigated at tight-binding (i.e., with a Hückel Hamiltonian) and ab initio level. For this kind of system, it is known that the presence of 60-degree angles between two stripes of the polyacene molecular skeleton induces the formation of singly occupied molecular orbitals, whose combination gives rise to quasi-degenerate electronic states. In particular, two types of convex polygons having a unique side length (rhombuses and triangles) are considered in this work. It is shown that the saturation via hydrogen atoms of the apical carbons located on outer borders of the 60-degree angles increases the number of quasi-degenerate orbitals, and hence the maximal multiplicity of the low-lying states of the system. Our tight-binding and ab initio (CAS-CI, NEVPT2) calculations indicate that the spin multiplicity of these molecular structures is in systematical accord with the Ovchinnikov rule.


The four open shell molecular orbitals of RS_4 polyacene, and their respective energies calculated at Hückel level are shown in the picture


Polyacene Magnetic clusters CAS-SCF NEVPT2 



We thank the “Paul Sabatier” University of Toulouse and the French CNRS for financial support. We acknowledge the support of the Erasmus Mundus programme of the European Union (FPA 2010–0147). M.E.K. acknowledges the ANR-DFG action ANR-11-INTB-1009 MITLOW for his PhD grant. Finally, we also thank the HPC resources of CALMIP under the allocation 2011-[p1048].


  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666CrossRefGoogle Scholar
  2. 2.
    Novoselov KS, Geim AK, Morozov SV, Jang D, Katselnov MI, Grigorieva IV, Dubonov SV, Firsov AA (2005) Nature 438:197CrossRefGoogle Scholar
  3. 3.
    Kane CL, Mele EJ (2005) Phys Rev Lett 95:226801CrossRefGoogle Scholar
  4. 4.
    Abanin DA, Lee PA, Levitov LS (2006) Phys Rev Lett 96:176803CrossRefGoogle Scholar
  5. 5.
    Pauling L (1960) The Nature of the Chemical Bond, 3rd edn. Cornell University Press, IthacaGoogle Scholar
  6. 6.
    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Science 312:1191CrossRefGoogle Scholar
  7. 7.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109CrossRefGoogle Scholar
  8. 8.
    El Khatib M, Evangelisti S, Leininger T, Bendazzoli GL (2012) Phys Chem Chem Phys 14:15666–15676CrossRefGoogle Scholar
  9. 9.
    El Khatib M. Huckel: a program to calculate electronic spectrum at tight binding level.
  10. 10.
    Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657CrossRefGoogle Scholar
  11. 11.
    Davidson ER, Feller D (1986) Chem Rev 86:681CrossRefGoogle Scholar
  12. 12.
    Pople JA (1976) In: Schaefer HF III (ed) Modern Theoretical Chemistry, vol 4. Plenum, New YorkGoogle Scholar
  13. 13.
    Widmark PO, Malmqvist PA, Roos B (1990) Theor Chim Acta 77:291CrossRefGoogle Scholar
  14. 14.
    Roos BO, Taylor PR, Sieghbahn PEM (1980) Chem Phys 48:157CrossRefGoogle Scholar
  15. 15.
    Werner HJ, Knowles PJ (1985) J Chem Phys 82:5053CrossRefGoogle Scholar
  16. 16.
    Knowles PJ, Werner HJ (1985) Chem Phys Lett 115:259CrossRefGoogle Scholar
  17. 17.
    Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP (2001) J Chem Phys 114:10252CrossRefGoogle Scholar
  18. 18.
    Angeli C, Cimiraglia R, Malrieu JP (2002) J Chem Phys 117:9138CrossRefGoogle Scholar
  19. 19.
    Angeli C, Pastore M, Cimiraglia R (2007) Theor Chem Acc 117:743CrossRefGoogle Scholar
  20. 20.
    Knowles P, Werner HJ. Molpro quantum chemistry package.
  21. 21.
    Polly R, Werner HJ, Manby FR, Knowles P (2004) Mol Phys 102:2311CrossRefGoogle Scholar
  22. 22.
    Ovchinnikov AA (1978) Theor Chim Acta 47:297CrossRefGoogle Scholar
  23. 23.
    Monari A, Bendazzoli GL, Evangelisti S (2008) J Chem Phys 129:134104CrossRefGoogle Scholar
  24. 24.
    Khavryuchenko VD, Tarasenko YA, Strelko VV (2007) Int J Mod Phys B 21:4507CrossRefGoogle Scholar
  25. 25.
    Angeli C, Calzado CJ (2012) J Chem Phys 137:034104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Muammar El Khatib
    • 1
  • Stefano Evangelisti
    • 1
  • Thierry Leininger
    • 1
  • Gian Luigi Bendazzoli
    • 2
  1. 1.Laboratoire de Chimie et Physique Quantiques - LCPQ/IRSAMCUniversité de Toulouse (UPS) et CNRS (UMR-5626)Toulouse CedexFrance
  2. 2.Dipartimento di Chimica Industriale “Toso Montanari”Università di BolognaBolognaItaly

Personalised recommendations