Cluster solvation models of carbon nanostructures: extension to fullerenes, tubes, and buds

  • Francisco Torrens
  • Gloria Castellano
Original Paper
Part of the following topical collections:
  1. Topical Collection QUITEL 2013


Carbon nanobud (CNB), a hybrid material consisting of single-wall C-nanotubes (CNTs) (SWNTs) with covalently attached fullerenes, in cluster form is discussed in organic solvents. Theories are developed based on bundlet and droplet models describing size-distribution functions. Phenomena present a unified explanation in bundlet model in which free energy of CNBs involved in cluster is combined from two parts: a volume one proportional to the number of molecules n in aggregate and a surface one, to n 1/2. Bundlet model enables describing distribution function of CNB clusters by size. From purely geometrical considerations bundlet (SWNT/CNB) and droplet (fullerene) models predict dissimilar behaviors. Interaction-energy parameters of CNBs are taken from C60. A C60/SWNT in-between behavior is expected; however, properties of CNBs result closer to SWNTs. Smaller CNB clusters result less stable but greater ones are more stable than SWNT bundles. The solubility decays with temperature result smaller for SWNT/CNB than C60 in agreement with lower number of units in aggregates. Discrepancy between the experimental data of heat of solution of fullerenes and CNT/CNBs is ascribed to sharp concentration dependence of heat of solution. Diffusion coefficient decays with temperature and results greater for CNB than SWNT or C60. Clusters (C60)13 and SWNT/CNB7 are representative of droplet and bundlet models.


Cluster solvation models of carbon nanostructures: extension to fullerenes, tubes, and buds


Bundlet cluster model Droplet cluster model Fullerene Nanostructure Nanotube Solubility of carbon nanobud 



The authors want to dedicate this manuscript to Dr. Luis Serrano-Andrés, who was greatly interested in this research and would have loved to see its conclusion.


  1. 1.
    Faraday M (1857) The Bakerian Lecture: Experimental relations of gold (and other metals) to light. Philos Trans R Soc London 147:145–181CrossRefGoogle Scholar
  2. 2.
    Murphy CJ, Thompson LB, Alkilany AM, Sisco PN, Boulos SP, Sivapalan ST, Yang JA, Chernak DJ, Huang J (2010) The many faces of gold nanorods. J Phys Chem Lett 1:2867–2875CrossRefGoogle Scholar
  3. 3.
    Balaban AT, Klein DJ, Liu X (1994) Graphitic cones. Carbon 32:357–359CrossRefGoogle Scholar
  4. 4.
    Klein DJ (2002) Topo-combinatoric categorization of quasi-local graphitic defects. Phys Chem Chem Phys 4:2099–2110CrossRefGoogle Scholar
  5. 5.
    Klein DJ, Balaban AT (2006) The eight classes of positive-curvature graphitic nanocones. J Chem Inf Model 46:307–320CrossRefGoogle Scholar
  6. 6.
    Clar E (1972) The aromatic sextet. Wiley, New YorkGoogle Scholar
  7. 7.
    Klein DJ (1992) Aromaticity via Kekule structures and conjugated circuits. J Chem Educ 69:691–694CrossRefGoogle Scholar
  8. 8.
    Misra A, Klein DJ, Morikawa T (2009) Clar theory for molecular benzenoids. J Phys Chem A 113:1151–1158CrossRefGoogle Scholar
  9. 9.
    Misra A, Schmalz TG, Klein DJ (2009) Clar theory for radical benzenoids. J Chem Inf Model 49:2670–2676CrossRefGoogle Scholar
  10. 10.
    Balaban AT, Klein DJ (2009) Claromatic carbon nanostructures. J Phys Chem C 113:19123–19133CrossRefGoogle Scholar
  11. 11.
    Klein DJ, Balaban AT (2011) Clarology for conjugated carbon nano-structures: molecules, polymers, graphene, defected graphene, fractal benzenoids, fullerenes, nano-tubes, nano-cones, nano-tori, etc. Open Org Chem J 5(1-M3):27–61CrossRefGoogle Scholar
  12. 12.
    Tamura R, Tsukada M (1995) Electronic states of the cap structure in the carbon nanotube. Phys Rev B 52:6015–6026CrossRefGoogle Scholar
  13. 13.
    Kim P, Odom TW, Huang J-L, Lieber CM (1999) Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states. Phys Rev Lett 82:1225–1228CrossRefGoogle Scholar
  14. 14.
    Carroll DL, Redlich P, Ajayan PM, Charlier J-C, Blase X, de Vita A, Car R (1997) Electronic structure and localized states at carbon nanotube tips. Phys Rev Lett 78:2811–2814CrossRefGoogle Scholar
  15. 15.
    Krishnan A, Dujardin E, Treacy MMJ, Hugdahl J, Lynum S, Ebbesen TW (1997) Photoisomerization in dendrimers by harvesting of low-energy photons. Nature (London) 388:451–454CrossRefGoogle Scholar
  16. 16.
    Kroto HW (1987) The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature (London) 329:529–531CrossRefGoogle Scholar
  17. 17.
    Han J, Jaffe R (1998) Energetics and geometries of carbon nanocone tips. J Chem Phys 108:2817–2823CrossRefGoogle Scholar
  18. 18.
    Tagmatarchis N, Maigne A, Yudasaka M, Iijima S (2006) Functionalization of carbon nanohorns with azomethine ylides: towards solubility enhancement and electron-transfer processes. Small 2:490–494CrossRefGoogle Scholar
  19. 19.
    Pagona G, Sandanayaka ASD, Araki Y, Fan J, Tagmatarchis N, Charalambidis G, Coutsolelos AG, Boitrel B, Yudasaka M, Iijima S, Ito O (2007) Covalent functionalization of carbon nanohorns with porphyrins: nanohybrid formation and photoinduced electron and energy transfer. Adv Funct Mater 17:1705–1711CrossRefGoogle Scholar
  20. 20.
    Cioffi C, Campidelli S, Brunetti FG, Meneghetti M, Prato M (2006) Functionalisation of carbon nanohorns. Chem Commun 2129–2131Google Scholar
  21. 21.
    Cioffi C, Campidelli S, Sooambar C, Marcaccio M, Marcolongo G, Meneghetti M, Paolucci D, Paolucci F, Ehli G, Rahman GMA, Sgobba V, Guldi DM, Prato M (2007) Synthesis, characterization, and photoinduced electron transfer in functionalized single wall carbon nanohorns. J Am Chem Soc 129:3938–3945CrossRefGoogle Scholar
  22. 22.
    Pagona G, Fan J, Tagmatarchis N, Yudasaka M, Iijima S (2006) Cone-end functionalization of carbon nanohorns. Chem Mater 18:3918–3920CrossRefGoogle Scholar
  23. 23.
    Zhu J, Kase D, Shiba K, Kasuya D, Yudasaka M, Iijima S (2003) Binary nanomaterials based on nanocarbons: a case for probing carbon nanohorns’ biorecognition properties. Nanoletters 3:1033–1036CrossRefGoogle Scholar
  24. 24.
    Pagona G, Sandanayaka ASD, Araki Y, Fan J, Tagmatarchis N, Yudasaka M, Iijima S, Ito O (2006) Electronic interplay on illuminated aqueous carbon nanohorn–porphyrin ensembles. J Phys Chem B 110:20729–20732CrossRefGoogle Scholar
  25. 25.
    Pagona G, Fan J, Maigne A, Yudasaka M, Iijima S, Tagmatarchis N (2007) Aqueous carbon nanohorn–pyrene–porphyrin nanoensembles: controlling charge-transfer interactions. Diamond Relat Mater 16:1150–1153CrossRefGoogle Scholar
  26. 26.
    Xia X, Jelski DA, Bowser JR, George TF (1992) MNDO study of boron-nitrogen analogues of buckminsterfullerene. J Am Chem Soc 114:6493–6496CrossRefGoogle Scholar
  27. 27.
    Silaghi-Dumitrescu I, Haiduc I, Sowerby DB (1993) Fully inorganic (carbon-free) fullerenes? The boron-nitrogen case. Inorg Chem 32:3755–3758CrossRefGoogle Scholar
  28. 28.
    Hamilton EJM, Dolan SE, Mann CM, Colijn HO, McDonald CA, Shore SG (1993) Preparation of amorphous boron nitride and its conversion to a turbostratic, tubular form. Science 260:659–661CrossRefGoogle Scholar
  29. 29.
    Hamilton EJM, Dolan SE, Mann CM, Colijn HO, Shore SG (1995) Preparation of amorphous boron nitride from the reaction of haloborazines with alkali metals and formation of a novel tubular morphology by thermal annealing. Chem Mater 7:111–117CrossRefGoogle Scholar
  30. 30.
    Loiseau A, Willaime F, Demoncy N, Hug G, Pascard H (1996) Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys Rev Lett 76:4737–4740CrossRefGoogle Scholar
  31. 31.
    Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron nitride nanotubes. Phys Rev B 49:5081–5084CrossRefGoogle Scholar
  32. 32.
    Bourgeois L, Bando Y, Shinozaki S, Kurashima K, Sato T (1999) Boron nitride cones: structure determination by transmission electron microscopy. Acta Crystallogr Sect A 55:168–177CrossRefGoogle Scholar
  33. 33.
    Bourgeois L, Bando Y, Han WQ, Sato T (2000) Structure of boron nitride nanoscale cones: ordered stacking of 240° and 300° disclinations. Phys Rev B 61:7686–7691CrossRefGoogle Scholar
  34. 34.
    Terauchi M, Tanaka M, Suzuki K, Ogino A, Kimura K (2000) Production of zigzag-type BN nanotubes and BN cones by thermal annealing. Chem Phys Lett 324:359–364CrossRefGoogle Scholar
  35. 35.
    Mota R, Machado M, Piquini P (2003) Structural and electronic properties of 240° nanocones. Phys Status Solidi C 0:799-802Google Scholar
  36. 36.
    Machado M, Piquini P, Mota R (2003) Energetics and electronic properties of BN nanocones with pentagonal rings at their apexes. Eur Phys J D 23:91–93CrossRefGoogle Scholar
  37. 37.
    Machado M, Piquini P, Mota R (2003) Electronic properties of selected BN nanocones. Mater Charact 50:179–182CrossRefGoogle Scholar
  38. 38.
    Machado M, Mota R, Piquini P (2003) Electronic properties of BN nanocones under electric fields. Microelectron J 34:545–547CrossRefGoogle Scholar
  39. 39.
    Machado M, Piquini P, Mota R (2004) Charge distributions in BN nanocones: electric field and tip termination effects. Chem Phys Lett 392:428–432CrossRefGoogle Scholar
  40. 40.
    Machado M, Piquini P, Mota R (2005) The influence of the tip structure and the electric field on BN nanocones. Nanotechnology 16:302–306CrossRefGoogle Scholar
  41. 41.
    Thesing LA, Piquini P, Kar T (2006) Theoretical investigation on the stability and properties of III-nitride nanotubes: BN-AlN junction. Nanotechnology 17:1637–1641CrossRefGoogle Scholar
  42. 42.
    Miyamoto Y, Rubio A, Cohen ML, Louie SG (1994) Chiral tubules of hexagonal BC2N. Phys Rev B 50:4976–4979CrossRefGoogle Scholar
  43. 43.
    Tenne R, Margulis L, Genut M, Hodes G (1992) Polyhedral and cylindrical structures of tungsten disulphide. Nature (London) 360:444–446CrossRefGoogle Scholar
  44. 44.
    Margulis L, Salitra G, Tenne R, Talianker M (1993) Nested fullerene-like structures. Nature (London) 365:113–114CrossRefGoogle Scholar
  45. 45.
    Weng-Sieh Z, Cherrey K, Chopra NG, Blase X, Miyamoto Y, Rubio A, Cohen ML, Louie SG, Zettl A, Gronsky R (1995) Synthesis of BxCyNz nanotubules. Phys Rev B 51:11229–11232CrossRefGoogle Scholar
  46. 46.
    Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269:966–967CrossRefGoogle Scholar
  47. 47.
    Terrones M, Benito AM, Manteca-Diego C, Hsu WK, Osman OI, Hare JP, Reid DG, Terrones H, Cheetham AK, Prassides K, Kroto HW, Walton DRM (1996) Pyrolytically grown BxCyNz nanomaterials: Nanofibres and nanotubes. Chem Phys Lett 257:576–582CrossRefGoogle Scholar
  48. 48.
    Kohler-Redlich P, Terrones M, Manteca-Diego C, Hsu WK, Terrones H, Rühle M, Kroto HW, Walton DRM (1999) Stable BC2N nanostructures: Low-temperature production of segregated C/BN layered materials. Chem Phys Lett 310:459–465CrossRefGoogle Scholar
  49. 49.
    Madden JDW (2009) Stiffer than steel. Science 323:1571–1572CrossRefGoogle Scholar
  50. 50.
    Li X, Liu L, Qin Y, Wu W, Guo ZX, Dai L, Zhu D (2003) C60 modified single-walled carbon nanotubes. Chem Phys Lett 377:32–36CrossRefGoogle Scholar
  51. 51.
    Nasibulin AG, Pikhitsa PV, Jiang H, Brown DP, Krasheninnikov AV, Anisimov AS, Queipo P, Moisala A, Gonzalez D, Lientschnig G, Hassanien A, Shandakov SD, Lolli G, Resasco DE, Choi M, Tománek D, Kauppinen EI (2007) A novel hybrid carbon material. Nat Nanotech 2:156–161CrossRefGoogle Scholar
  52. 52.
    Nasibulin AG, Anisimov AS, Pikhitsa PV, Jiang H, Brown DP, Choi M, Kauppinen EI (2007) Investigations of NanoBud formation. Chem Phys Lett 446:109–114CrossRefGoogle Scholar
  53. 53.
    Nasibulin AG, Shandakov SD, Anisimov AS, Gonzalez D, Jiang H, Pudas M, Queipo P, Kauppinen EI (2008) Charging of aerosol products during ferrocene vapor decomposition in N2 and CO atmospheres. J Phys Chem C 112:5762–5769CrossRefGoogle Scholar
  54. 54.
    Anisimov AS, Nasibulin AG, Jiang H, Launois P, Cambedouzou J, Shandakov SD, Kauppinen EI (2010) Mechanistic investigations of single-walled carbon nanotube synthesis by ferrocene vapor decomposition in carbon monoxide. Carbon 48:380–388CrossRefGoogle Scholar
  55. 55.
    Meng T, Wang CY, Wang SY (2008) First-principles study of a hybrid carbon material: imperfect fullerenes covalently bonded to defective single-walled carbon nanotubes. Phys Rev B 77:33415, 1-4CrossRefGoogle Scholar
  56. 56.
    Wu X, Zeng XC (2008) First-principles study of a carbon nanobud. ACS Nano 2:1459–1465CrossRefGoogle Scholar
  57. 57.
    Fürst JA, Hashemi J, Markussen T, Brandbyge M, Jauho AP, Nieminen RM (2009) Electronic transport properties of fullerene functionalized carbon nanotubes: ab initio and tight-binding calculations. Phys Rev B 80:35427, 1-4CrossRefGoogle Scholar
  58. 58.
    Zhu X, Su H (2009) Magnetism in hybrid carbon nanostructures: nanobuds. Phys Rev B 79:165401, 1-5CrossRefGoogle Scholar
  59. 59.
    Wang M, Li CM (2011) Magnetic properties of all-carbon graphene-fullerene nanobuds. Phys Chem Chem Phys 13:5945–5951CrossRefGoogle Scholar
  60. 60.
    Dresselhaus MS, Dresselhaus G, Avouris P (eds) (2001) Carbon nanotubes: synthesis, structure, properties, and applications, Topics in Applied Physics No. 80, Springer, Berlin.Google Scholar
  61. 61.
    Reich S, Thomsen C, Maultzsch J (2004) Carbon nanotubes. Wiley–VCH, Weinheim Google Scholar
  62. 62.
    Roth S, Carroll D (2004) One-dimensional metals: conjugated polymers, organic crystals, carbon nanotubes. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  63. 63.
    Jorio A (ed) (2008) Carbon nanotubes: Advanced topics in the synthesis, structure, properties and applications. Springer, BerlinGoogle Scholar
  64. 64.
    Harris PJF (2009) Carbon nanotube science: Synthesis, properties and applications. Cambridge University, CambridgeCrossRefGoogle Scholar
  65. 65.
    Guldi DM, Martin N (eds) (2010) Carbon nanotubes and related structures. Wiley–VCH, WeinheimGoogle Scholar
  66. 66.
    Torrens F, Castellano G (2005) Cluster origin of the solubility of single-wall carbon nanotubes. Comput Lett 1:331–336CrossRefGoogle Scholar
  67. 67.
    Torrens F, Castellano G (2007) Cluster nature of the solvation features of single-wall carbon nanotubes. Curr Res Nanotechn 1:1–29Google Scholar
  68. 68.
    Torrens F, Castellano G (2007) Effect of packing on the cluster nature of C nanotubes: an information entropy analysis. Microelectron J 38:1109–1122CrossRefGoogle Scholar
  69. 69.
    Torrens F, Castellano G (2007) Cluster origin of the transfer phenomena of single-wall carbon nanotubes. J Comput Theor Nanosci 4:588–603Google Scholar
  70. 70.
    Torrens F, Castellano G (2007) Asymptotic analysis of coagulation–fragmentation equations of carbon nanotube clusters. Nanoscale Res Lett 2:337–349CrossRefGoogle Scholar
  71. 71.
    Torrens F, Castellano G (2011) (Co-)solvent selection for single-wall carbon nanotubes: best solvents, acids, superacids and guest–host inclusion complexes. Nanoscale 3:2494–2510CrossRefGoogle Scholar
  72. 72.
    Torrens F, Castellano G (2010) Cluster nature of the solvent features of single-wall carbon nanohorns. Int J Quantum Chem 110:563–570CrossRefGoogle Scholar
  73. 73.
    Torrens F, Castellano G (2012) Bundlet model for single-wall carbon nanotubes, nanocones and nanohorns. Int J Chemoinf Chem Eng 2(1):48–98Google Scholar
  74. 74.
    Torrens F, Castellano G (2013) Solvent features of cluster single-wall C, BC2N and BN nanotubes, cones and horns. Microelectron Eng 108:127–133CrossRefGoogle Scholar
  75. 75.
    Torrens F, Castellano G (2013) Bundlet model of single-wall carbon, BC2N and BN nanotubes, cones and horns in organic solvents. J Nanomater Mol Nanotech 2:1000107, 1-9CrossRefGoogle Scholar
  76. 76.
    Torrens F, Castellano G (2013) C-nanostructures cluster models in organic solvents: fullerenes, tubes, buds and graphenes. J Chem Chem Eng 7:1026–1035Google Scholar
  77. 77.
    Torrens F, Castellano G (2014) Cluster model expanded to C-nanostructures: fullerenes, tubes, graphenes and their buds. Austin J Nanomed Nanotech 2(2): 7Google Scholar
  78. 78.
    Torrens F, Castellano G (2013) Elementary polarizability of Sc/fullerene/graphene aggregates and di/graphene–cation interactions. J Nanomater Mol Nanotech doi:10.4172/2324-8777.S1-001Google Scholar
  79. 79.
    Frenkel YI (1946) Kinetic theory of liquids. Oxford University, OxfordGoogle Scholar
  80. 80.
    Smirnov BM (1992) Clusters with close packing. Phys Usp 35:37–48CrossRefGoogle Scholar
  81. 81.
    Smirnov BM (1993) Clusters with close packing and filled cells. Sov Phys Usp 36:933–955CrossRefGoogle Scholar
  82. 82.
    Bezmel’nitsyn VN, Eletskii AV, Okun’ MV (1998) Fullerenes in solutions. Physics–Uspekhi 41:1091–1114Google Scholar
  83. 83.
    Peierls R (1935) Quelques propriétés typiques des corps solides. Ann Inst Henri Poincaré 5:177–222Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institut Universitari de Ciència MolecularUniversitat de València, Edifici d’Instituts de PaternaValènciaSpain
  2. 2.Facultad de Veterinaria y Ciencias ExperimentalesUniversidad Católica de Valencia San Vicente MártirValènciaSpain

Personalised recommendations