Switching the conductance of a molecular junction using a proton transfer reaction

  • Chriszandro Hofmeister
  • Rainer Härtle
  • Óscar Rubio-Pons
  • Pedro B. Coto
  • Andrzej L. Sobolewski
  • Michael Thoss
Original Paper
Part of the following topical collections:
  1. Topical Collection on the occasion of Prof. Tim Clark’s 65th birthday


A novel mechanism for switching a molecular junction based on a proton transfer reaction triggered by an external electrostatic field is proposed. As a specific example to demonstrate the feasibility of the mechanism, the tautomers [2,5-(4-hydroxypyridine)] and {2,5-[4(1H)-pyridone]} are considered. Employing a combination of first-principles electronic structure calculations and Landauer transport theory, we show that both tautomers exhibit very different conductance properties and realize the “on” and “off” states of a molecular switch. Moreover, we provide a proof of principle that both forms can be reversibly converted into each other using an external electrostatic field.


Charge transport Density functional theory Molecular electronics Molecular switch Single molecule junction 



This work has been supported by the the German-Israeli Foundation for Scientific Development (GIF), the Deutsche Forschungsgemeinschaft (DFG) through the Cluster of Excellence “Engineering of Advanced Materials” (EAM), SFB 953 and a research grant, as well as projects, CTQ2012-36966 (MICINN), and UAH2011/EXP-041 (UAH). ALS acknowledges the research grant of the National Science Centre of Poland 2011/01/M/ST2/00561. Generous allocation of computing time at the computing centers in Erlangen (RRZE), Munich (LRZ), and Jülich (JSC) is greatly acknowledged.


  1. 1.
    Park H, Park J, Lim AKL, Anderson EH, Alivisatos AP, McEuen PL (2000) Nature 407:57CrossRefGoogle Scholar
  2. 2.
    Elbing M, Ochs R, Koentopp M, Fischer M, von Hänisch C, Weigend F, Evers F, Weber HB, Mayor M (2005) Proc Natl Acad Sci U S A 102:8815CrossRefGoogle Scholar
  3. 3.
    Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278:252CrossRefGoogle Scholar
  4. 4.
    Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, Löhneysen H (2002) Phys Rev Lett 88:176804CrossRefGoogle Scholar
  5. 5.
    Smit RHM, Noat Y, Untiedt C, Lang ND, van Hemert MC, van Ruitenbeek JM (2002) Nature 419:906CrossRefGoogle Scholar
  6. 6.
    Qiu XH, Nazin GV, Ho W (2004) Phys Rev Lett 92:206102CrossRefGoogle Scholar
  7. 7.
    Tao NJ (2006) Nat Nanotechnol 1:173CrossRefGoogle Scholar
  8. 8.
    Ioffe Z, Shamar T, Ophir A, Noy G, Yutsis I, Kfir K, Cheshnovsky O, Selzer Y (2008) Nat Nanotechnol 3:727CrossRefGoogle Scholar
  9. 9.
    Meded V, Bagrets A, Arnold A, Evers F (2009) Small 5(19):2218CrossRefGoogle Scholar
  10. 10.
    van der Molen SJ, Liao J, Kudernac T, Agustsson JS, Bernard L, Calame M, van Wees BJ, Feringa BL, Schönenberger C (2009) Nano Lett 9:76CrossRefGoogle Scholar
  11. 11.
    van der Molen SJ, Liljeroth P (2010) J Phys Condens Matter 22:133001CrossRefGoogle Scholar
  12. 12.
    Ballmann S, Härtle R, Coto PB, Elbing M, Mayor M, Bryce MR, Thoss M, Weber HB (2012) Phys Rev Lett 109:056801CrossRefGoogle Scholar
  13. 13.
    Ballmann S, Hieringer W, Härtle R, Coto PB, Bryce MR, Görling A, Thoss M, Weber HB (2013) Phys Status Solidi B 250:2452CrossRefGoogle Scholar
  14. 14.
    Hänggi P, Ratner M, Yaliraki S Eds (2002) Chem Phys 281(2–3)Google Scholar
  15. 15.
    Nitzan A, Ratner MA (2003) Science 300:1384CrossRefGoogle Scholar
  16. 16.
    Cuniberti G, Fagas G, Richter K (eds) (2005) Introducing molecular electronics, lectures notes in physics, vol. 680. Springer, BerlinGoogle Scholar
  17. 17.
    Joachim C, Ratner MA (2005) Proc Natl Acad Sci U S A 102:8801CrossRefGoogle Scholar
  18. 18.
    Datta S (2005) Quantum transport: atom to transistor, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. 19.
    Galperin M, Nitzan A, Ratner MA (2008) J Phys Condens Matter 20:374107CrossRefGoogle Scholar
  20. 20.
    Nazarov YV, Blanter YM (2009) Quantum transport: introduction to nanoscience. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. 21.
    Cuevas JC, Scheer E (2010) Molecular electronics: an introduction to theory and experiment. World Scientific, SingaporeCrossRefGoogle Scholar
  22. 22.
    Härtle R, Thoss M (2011) Phys Rev B 83:115414CrossRefGoogle Scholar
  23. 23.
    Zimbovskaya NA, Pederson MR (2011) Phys Rep 509:1CrossRefGoogle Scholar
  24. 24.
    Wang H, Thoss M (2013) J Chem Phys 138:134704CrossRefGoogle Scholar
  25. 25.
    Härtle R, Butzin M, Thoss M (2013) Phys Rev B 87:085422CrossRefGoogle Scholar
  26. 26.
    Pshenichnyuk IA, Coto PB, Leitherer S, Thoss M (2013) J Phys Chem Lett 4:809CrossRefGoogle Scholar
  27. 27.
    Aviram A, Ratner MA (1974) Chem Phys Lett 29(2):277CrossRefGoogle Scholar
  28. 28.
    Metzger RM (2008) J Mater Chem 18:4364CrossRefGoogle Scholar
  29. 29.
    Vuillaume D (2008) Compt Rendus Phys 9(1):78CrossRefGoogle Scholar
  30. 30.
    Choi BY, Kahng SJ, Kim S, Kim H, Kim HW, Song YJ, Ihm J, Kuk Y (2006) Phys Rev Lett 96:156106CrossRefGoogle Scholar
  31. 31.
    del Valle M, Gutiérrez R, Tejedor C, Cuniberti G (2007) Nat Nanotechnol 2:176CrossRefGoogle Scholar
  32. 32.
    Mendes P, Flood A, Stoddart J (2005) Appl Phys A Mater Sci Process 80:1197CrossRefGoogle Scholar
  33. 33.
    Prasongkit J, Grigoriev A, Ahuja R (2013) Phys Rev B 87:155434CrossRefGoogle Scholar
  34. 34.
    Sobolewski AL (2008) Phys Chem Chem Phys 10:1243CrossRefGoogle Scholar
  35. 35.
    Benesch C, Rode MF, Čížek M, Härtle R, Rubio-Pons O, Thoss M, Sobolewski AL (2009) J Phys Chem C 113:10315CrossRefGoogle Scholar
  36. 36.
    Benesch C, Čížek M, Klimeš J, Kondov I, Thoss M, Domcke W (2008) J Phys Chem C 112:9880CrossRefGoogle Scholar
  37. 37.
    Benesch C, Čížek M, Thoss M, Domcke W (2006) Chem Phys Lett 430:355CrossRefGoogle Scholar
  38. 38.
    Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97(4):2571CrossRefGoogle Scholar
  39. 39.
    Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theor Chim Acta 77:123CrossRefGoogle Scholar
  40. 40.
    TURBOMOLE V6.3 2011, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from
  41. 41.
    Fisher DS, Lee PA (1981) Phys Rev B 23:6851CrossRefGoogle Scholar
  42. 42.
    In the calculations we have used E F = -5.31 eVGoogle Scholar
  43. 43.
    Meir Y, Wingreen NS (1992) Phys Rev Lett 68:2512CrossRefGoogle Scholar
  44. 44.
    Arabi AA, Matta CF (2011) Phys Chem Chem Phys 13:13738CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Theoretical Physics and Interdisciplinary Center for Molecular MaterialsFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Institut für Theoretische PhysikGöttingenGermany
  3. 3.Institute of PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations