Advertisement

A density functional theory study of paramagnetic cyclopentadienylcobalt(III) derivatives: fluoride versus cyanide

Original Paper
Part of the following topical collections:
  1. Topical Collection on the occasion of Prof. Tim Clark’s 65th birthday

Abstract

The cobalt(III) complexes Cp2Co2F4 and Cp2Co2(CN)4 have been studied by density functional theory methods as representatives of the experimentally known Cp2Co2X4 species with the weak-field fluoride ligand and the strong-field cyanide ligand. Both complexes were found to have relatively complicated energy surfaces with low-energy triplet and quintet spin state structures as well as the expected singlet-state structures for Co(III) complexes. This existence of singlet-, triplet-, and quintet-state structures of similar energies complicates the study of these complexes by density functional theory. The B3LYP* method of Reiher et al. was chosen in an effort to provide the most reliable estimates of the relative energies of the singlet, triplet, and quintet spin states. The lowest-energy Cp2Co2F4 structure was found to be a doubly bridged quintet spin state structure, with similar triplet and singlet structures lying within ∼4 kcal mol−1 of this quintet structure. The lowest-energy Cp2Co2(CN)4 structure was found to be a triplet spin state structure, with a singlet structure lying within ∼1 kcal mol−1 of this triplet structure. Almost all of the Cp2Co2X4 structures were found to have nonbonding Co···Co distances in excess of 2.9 Å, as expected for Co(III) complexes. In general, structures with trans stereochemistry of the Cp and other terminal ligands were found to be of lower energy than the corresponding structures with cis stereochemistry.

Keywords

Cyclopentadienylmetal halides Cobalt Cyanide Fluoride Paramagnetic molecules Metal–metal interactions Density functional theory 

Notes

Acknowledgments

The authors are indebted to the Chinese National Natural Science Foundation (20903010, 21243008, 21373025), the Beijing Municipal Natural Science Foundation (2132035), the Opening Project of State Key Laboratory of Explosion Science of Technology (Beijing Institute of Technology) (2DkT10-01a and ZDKT12-03), Excellent Young Scholars Research Fund of Beijing Institute of Technology, (2012YG0202), Beijing Higher Education Young Elite Teacher Project (YETP1226) and the U.S. National Science Foundation (grants CHE-1057466 and CHE-1054286) for their support of this research.

Supplementary material

894_2014_2153_MOESM1_ESM.pdf (636 kb)
Supporting Information Tables S1 to S8: Coordinates of the singlet, triplet, and quintet spin state structures of Cp2Co2F4; Tables S9 to S20: Coordinates of the singlet, triplet, and quintet spin state structures of Cp2Co2(CN)4; Tables S21 to S28: Harmonic vibrational frequencies of the singlet, triplet, and quintet spin state structures of Cp2Co2F4; Tables S29 to S40: Harmonic vibrational frequencies of the singlet, triplet, and quintet spin state structures of Cp2Co2(CN)4; Figures S1 and S2: Optimized structures for the the singlet, triplet, and quintet states of Cp2Co2F4 and Cp2Co2(CN)4 using the B3LYP and BP86 methods; Tables S41 and S42: Total energies (E, in hartrees), relative energies (ΔE, in kcal mol−1), number of imaginary vibrational frequencies (Nimag), Co–Co bond distances (Å), and spin contamination <S 2> for the Cp2Co2F4 and Cp2Co2(CN)4 structures using the B3LYP and BP86 methods. (PDF 635  kb)

References

  1. 1.
    Baumann F, Dormann E, Ehleiter Y, Kaim W, Kärcher J, Kelemen M, Krammer R, Saurenz D, Stalke D, Wachter C, Wolmershäuser G, Sitzmann H (1999) J Organomet Chem 587:267–283CrossRefGoogle Scholar
  2. 2.
    Takemoto S, Honma T, Matsuzaka H (2011) Organomet 30:1013–1020CrossRefGoogle Scholar
  3. 3.
    Nishihara Y, Deck KJ, Shang M, Fehlner TP, Haggerty BS, Rheingold AL (1994) Organomet 13:4510–4522CrossRefGoogle Scholar
  4. 4.
    Hildebrand F, Kohlmann C, Franz A, Lütz S (2008) Adv Synth Catal 350:909–918CrossRefGoogle Scholar
  5. 5.
    Kuwata S, Ikariya T (2010) Dalton Trans 39:2984–2992CrossRefGoogle Scholar
  6. 6.
    Walcarius A, Nasraoui R, Wang Z, Qu F, Urvanova V, Etienne M, Göllü M, Demir AS, Gajdzik J, Hempelmann R (2011) Bioelectrochemistry 82:46–54CrossRefGoogle Scholar
  7. 7.
    Teixidor F, Cirera MR, Viñas C, Kivekäs R, Sillanpää R, Demonceau D (2003) J Organometal Chem 680:89–99CrossRefGoogle Scholar
  8. 8.
    Ishiwata K, Kumata S, Ikariya T (2009) J Am Chem Soc 131:5001–5009CrossRefGoogle Scholar
  9. 9.
    Ito M, Endo Y, Tejima N, Ikariya T (2010) Organomet 29:2397–2399CrossRefGoogle Scholar
  10. 10.
    Kang JW, Maitlis PM (1968) J Am Chem Soc 90:3259–3261CrossRefGoogle Scholar
  11. 11.
    Kang JW, Mosley K, Maitlis PM (1968) Chem Comm 1304–1305Google Scholar
  12. 12.
    Churchill MR, Julis SA, Rotella FJ (1977) Inorg Chem 16:1137–1141CrossRefGoogle Scholar
  13. 13.
    Kölle U, Khouzami F, Fuss B (1982) Angew Chem Int Ed Engl 21:131–132CrossRefGoogle Scholar
  14. 14.
    Koelle U, Fuss B, Rajasekharan MV, Ramakrishna BL, Ammeter JH, Böhm MC (1984) J Am Chem Soc 106:4152–4160CrossRefGoogle Scholar
  15. 15.
    Zhang S, Zhang X, Li Q, King RB (2013) Inorg Chim Acta 395:109–118CrossRefGoogle Scholar
  16. 16.
    Salomon O, Reiher M, Hess BA (2002) J Chem Phys 117:4729–4737CrossRefGoogle Scholar
  17. 17.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian, Inc., WallingfordGoogle Scholar
  18. 18.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  19. 19.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789Google Scholar
  20. 20.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  21. 21.
    Perdew JP (1986) Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  22. 22.
    Dunning TH (1970) J Chem Phys 53:2823–2833CrossRefGoogle Scholar
  23. 23.
    Huzinaga S (1965) J Chem Phys 42:1293–1302CrossRefGoogle Scholar
  24. 24.
    Wachters AJH (1970) J Chem Phys 52:1033–1036CrossRefGoogle Scholar
  25. 25.
    Hood DM, Pitzer RM, Schaefer HF (1979) J Chem Phys 71:705–712CrossRefGoogle Scholar
  26. 26.
    Papas BN, Schaefer HF (2006) J Mol Struct (THEOCHEM) 768:175–181CrossRefGoogle Scholar
  27. 27.
    Koelle U, Fuss B, Belting M, Raabe E (1986) Organomet 5:980–987CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Chemistry, Beijing Institute of TechnologyBeijingPeople’s Republic of China
  2. 2.MOE Key Laboratory of Theoretical Chemistry of Environment, Center for Computational Quantum ChemistrySouth China Normal UniversityGuangzhouPeople’s Republic of China
  3. 3.Department of Chemistry and Center for Computational ChemistryUniversity of GeorgiaAthensUSA

Personalised recommendations