The unrestricted local properties: application in nanoelectronics and for predicting radicals reactivity

Original Paper
Part of the following topical collections:
  1. Topical Collection on the occasion of Prof. Tim Clark’s 65th birthday

Abstract

The local electron affinity (EAL) and the local ionization energy (IEL) are successfully used for predicting properties of closed-shell species for drug design and for nanoelectronics. Here the respective unrestricted Hartree–Fock variants of EAL and IEL, i.e., the unrestricted local electron affinity (UHF–EAL) and ionization energy (UHF–IEL), have been shown to be useful for predicting properties of open-shell species. UHF–EAL and UHF–IEL have been applied for explaining unique electronic properties of an exemplary nanomaterial carbon peapod. It is also demonstrated that UHF–EAL is useful for predicting and better understanding reactivity of radicals related to alkanes activation.

Keywords

Carbon nanotubes Fullerene Local electron affinity Local ionization energy Local properties Nanoelectronics 

Notes

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of SFB 953 “Synthetic Carbon Allotropes” and by the Universität Bayern e.V. via a stipend within the Bavarian Elite Aid Program.

Supplementary material

894_2014_2134_MOESM1_ESM.pdf (770 kb)
ESM 1(PDF 770 kb)

References

  1. 1.
    Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Average local ionization energies on the molecular-surfaces of aromatic systems as guides to chemical-reactivity. Can J Chem 68(8):1440–1443CrossRefGoogle Scholar
  2. 2.
    Ehresmann B, Martin B, Horn AHC, Clark T (2003) Local molecular properties and their use in predicting reactivity. J Mol Model 9(5):342–347CrossRefGoogle Scholar
  3. 3.
    Clark T (2010) The local electron affinity for non-minimal basis sets. J Mol Model 16(7):1231–1238CrossRefGoogle Scholar
  4. 4.
    Politzer P, Murray JS, Bulat FA (2010) Average local ionization energy: a review. J Mol Model 16(11):1731–1742CrossRefGoogle Scholar
  5. 5.
    Manallack DT (2008) The use of local surface properties for molecular superimposition. J Mol Model 14(9):797–805CrossRefGoogle Scholar
  6. 6.
    Clark T (2004) QSAR and QSPR based solely on surface properties? J Mol Graph Model 22(6):519–525CrossRefGoogle Scholar
  7. 7.
    Ehresmann B, de Groot MJ, Clark T (2005) Surface-integral QSPR models: local energy properties. J Chem Inf Model 45(4):1053–1060CrossRefGoogle Scholar
  8. 8.
    Hennemann M, Friedl A, Lobell M, Keldenich J, Hillisch A, Clark T, Goller AH (2009) CypScore: quantitative prediction of reactivity toward cytochrornes P450 based on semiempirical molecular orbital theory. ChemMedChem 4(4):657–669CrossRefGoogle Scholar
  9. 9.
    Jakobi A-J, Mauser H, Clark T (2008) ParaFrag—an approach for surface-based similarity comparison of molecular fragments. J Mol Model 14(7):547–558CrossRefGoogle Scholar
  10. 10.
    Kramer C, Beck B, Kriegl JM, Clark T (2008) A composite model for hERG blockade. ChemMedChem 3(2):254–265CrossRefGoogle Scholar
  11. 11.
    El Kerdawy A, Wick CR, Hennemann M, Clark T (2012) Predicting the sites and energies of noncovalent intermolecular interactions using local properties. J Chem Inf Model 52(4):1061–1071CrossRefGoogle Scholar
  12. 12.
    Atienza C, Martin N, Wielopolski M, Haworth N, Clark T, Guldi DM (2006) Tuning electron transfer through p-phenyleneethynylene molecular wires. Chem Commun 30:3202–3204CrossRefGoogle Scholar
  13. 13.
    Ciammaichella A, Dral PO, Clark T, Tagliatesta P, Sekita M, Guldi DM (2012) A π-stacked porphyrin–fullerene electron donor–acceptor conjugate that features a surprising frozen geometry. Chem Eur J 18(44):14008–14016CrossRefGoogle Scholar
  14. 14.
    Lembo A, Tagliatesta P, Guldi DM, Wielopolski M, Nuccetelli M (2009) Porphyrin-beta-oligo-ethynylenephenylene-[60]fullerene triads: synthesis and electrochemical and photophysical characterization of the new porphyrin-oligo-PPE-[60]fullerene systems. J Phys Chem A 113(9):1779–1793CrossRefGoogle Scholar
  15. 15.
    Jäger CM, Schmaltz T, Novak M, Khassanov A, Vorobiev A, Hennemann M, Krause A, Dietrich H, Zahn D, Hirsch A, Halik M, Clark T (2013) Improving the charge transport in self-assembled monolayer field-effect transistors: from theory to devices. J Am Chem Soc 135(12):4893–4900CrossRefGoogle Scholar
  16. 16.
    Santamaria L, Bianchisantamaria A (1991) Free-radicals as carcinogens and their quenchers as anticarcinogens. Med Oncol Tumor Pharmacother 8(3):121–140Google Scholar
  17. 17.
    Fokin AA, Schreiner PR (2002) Selective alkane transformations via radical and radical cations: insights into the activation step from experiment and theory. Chem Rev 102:1551–1593, See also references thereinCrossRefGoogle Scholar
  18. 18.
    Dral PO (2013) Theoretical study of electronic properties of carbon allotropes. http://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/3763. Accessed 4 November 2013. URN: urn:nbn:de:bvb:29-opus4-37630. Dissertation (Dr. rer. nat.), Friedrich-Alexander-Universität Erlangen-Nürnberg
  19. 19.
    Politzer P, Murray JS, Grice ME, Brinck T, Ranganathan S (1991) Radial behavior of the average local ionization energies of atoms. J Chem Phys 95(9):6699–6704CrossRefGoogle Scholar
  20. 20.
    Politzer P, Shields ZPI, Bulat FA, Murray JS (2011) Average local ionization energies as a route to intrinsic atomic electronegativities. J Chem Theory Comput 7(2):377–384CrossRefGoogle Scholar
  21. 21.
    Hennemann M, El Kerdawy A, Clark T, Dral PO (2013) VWF2Cube 2013. Universität Erlangen-Nürnberg and Cepos InSilico LtdGoogle Scholar
  22. 22.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) The development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107(13):3902–3909CrossRefGoogle Scholar
  23. 23.
    Hennemann M, Clark T, Dral PO (2013) EMPIRE 2013. Universität Erlangen-Nürnberg and Cepos InSilico LtdGoogle Scholar
  24. 24.
    Zhurko GA, Zhurko DA (2013) Chemcraft. Chemcraft Version 1.7 (Build 132)Google Scholar
  25. 25.
    Clark T, Hennemann M (2012) EMPIRE 2012. Universität Erlangen-Nürnberg and Cepos InSilico Ltd. (http://www.ceposinsilico.de/products/empire.htm), accessed April 29th, 2013
  26. 26.
    Clark T, Alex A, Beck B, Burkhardt F, Chandrasekhar J, Gedeck P, Horn A, Hutter M, Martin B, Dral PO, Rauhut G, Sauer W, Schindler T, Steinke T (2011) VAMP 11.0. University of Erlangen, GermanyGoogle Scholar
  27. 27.
    Smith BW, Monthioux M, Luzzi DE (1998) Encapsulated C60 in carbon nanotubes. Nature 396(6709):323–324CrossRefGoogle Scholar
  28. 28.
    Vavro J, Llaguno MC, Satishkumar BC, Luzzi DE, Fischer JE (2002) Electrical and thermal properties of C60-filled single-wall carbon nanotubes. Appl Phys Lett 80(8):1450–1452CrossRefGoogle Scholar
  29. 29.
    Guo A, Fu YY, Guan LH, Shi ZJ, Gu ZN, Huang R, Zhang X (2007) Ambipolar transport behaviors in fullerene peapod transistors. Solid State Phenom 121–123:521–524CrossRefGoogle Scholar
  30. 30.
    Rochefort A (2003) Electronic and transport properties of carbon nanotube peapods. Phys Rev B 67(11):115401CrossRefGoogle Scholar
  31. 31.
    Brink C, Andersen LH, Hvelplund P, Mathur D, Voldstad JD (1995) Laser photodetachment of C60 and C70 ions cooled in a storage ring. Chem Phys Lett 233(1–2):52–56CrossRefGoogle Scholar
  32. 32.
    Wang X-B, Ding C-F, Wang L-S (1998) High resolution photoelectron spectroscopy of C60 . J Chem Phys 110(17):8217–8220CrossRefGoogle Scholar
  33. 33.
    Wildman TA (1986) An ab initio quantum chemical study of hydrogen abstraction from methane by methyl. Chem Phys Lett 126(3–4):325–329CrossRefGoogle Scholar
  34. 34.
    Fisher JJ, Koyanagi GK, McMahon TB (2000) The C2H7 + potential energy surface: a Fourier transform ion cyclotron resonance investigation of the reaction of methyl cation with methane. Int J Mass Spectrom 195:491–505CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Computer-Chemie-Centrum and Interdisciplinary Center for Molecular MaterialsUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Max-Planck-Institut für KohlenforschungMülheim an der RuhrGermany

Personalised recommendations