Journal of Molecular Modeling

, 20:2121 | Cite as

How well does cholesteryl hemisuccinate mimic cholesterol in saturated phospholipid bilayers?

  • Waldemar Kulig
  • Joona Tynkkynen
  • Matti Javanainen
  • Moutusi Manna
  • Tomasz Rog
  • Ilpo Vattulainen
  • Pavel Jungwirth
Original Paper
Part of the following topical collections:
  1. Topical Collection on the occasion of Prof. Tim Clark’s 65th birthday

Abstract

Cholesteryl hemisuccinate is a detergent that is often used to replace cholesterol in crystallization of membrane proteins. Here we employ atomistic molecular dynamics simulations to characterize how well the properties of cholesteryl hemisuccinate actually match those of cholesterol in saturated protein-free lipid membranes. We show that the protonated form of cholesteryl hemisuccinate mimics many of the membrane properties of cholesterol quite well, while the deprotonated form of cholesteryl hemisuccinate is less convincing in this respect. Based on the results, we suggest that cholesteryl hemisuccinate in its protonated form is a quite faithful mimic of cholesterol for membrane protein crystallization, if specific cholesterol-protein interactions (not investigated here) are not playing a crucial role.

Keywords

Cholesterol Detergent Molecular dynamics simulations Membrane elasticity 

References

  1. 1.
    Rog T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M (2009) Biochim Biophys Acta Biomembr 1788:97. doi:10.1016/j.bbamem.2008.08.022 CrossRefGoogle Scholar
  2. 2.
    Ohvo-Rekila H, Ramstedt B, Leppimaki P, Slotte JP (2002) Prog Lipid Res 41:66. doi:10.1016/s0163-7827(01)00020-0 CrossRefGoogle Scholar
  3. 3.
    Holtta-Vuori M, Uronen RL, Repakova J et al (2008) Traffic 9:1839. doi:10.1111/j.1600-0854.2008.00801.x CrossRefGoogle Scholar
  4. 4.
    Li ZG, Mintzer E, Bittman R (2006) J Org Chem 71:1718CrossRefGoogle Scholar
  5. 5.
    Maxfield FR, Wustner D (2012) In: DiPaolo G, Wenk MR (eds) Lipids, vol 108. Elsevier, San DiegoGoogle Scholar
  6. 6.
    Robalo JR, Canto A d, Carvalho AJP, Ramalho JPP, Loura LMS (2013) J Phys Chem B 117:5806. doi:10.1021/jp312026u CrossRefGoogle Scholar
  7. 7.
    Schroeder F (1984) Prog Lipid Res 23:97. doi:10.1016/0163-7827(84)90009-2 CrossRefGoogle Scholar
  8. 8.
    Wustner D (2007) Chem Phys Lipids 146:1. doi:10.1016/j.chemphyslip.2006.12.004 CrossRefGoogle Scholar
  9. 9.
    Liu W, Chun E, Thompson AA et al (2012) Science 337:232. doi:10.1126/science.1219218 CrossRefGoogle Scholar
  10. 10.
    Cherezov V, Rosenbaum DM, Hanson MA et al (2007) Science 318:1258. doi:10.1126/science.1150577 CrossRefGoogle Scholar
  11. 11.
    Morth JP, Pedersen BP, Toustrup-Jensen MS et al (2007) Nature 450:1043. doi:10.1038/nature06419 CrossRefGoogle Scholar
  12. 12.
    Laursen M, Yatime L, Nissen P, Fedosova NU (2013) Proc Natl Acad Sci U S A 110:10958CrossRefGoogle Scholar
  13. 13.
    Kwon HJ, Abi-Mosleh L, Wang ML et al (2009) Cell 137:1213. doi:10.1016/j.cell.2009.03.049 CrossRefGoogle Scholar
  14. 14.
    Lascombe MB, Ponchet M, Venard P, Milat ML, Blein JP, Prange T (2002) Acta Crystallogr D Biol Crystallogr 58:1442. doi:10.1107/s0907444902011745 CrossRefGoogle Scholar
  15. 15.
    Zocher M, Zhang C, Rasmussen SGF, Kobilka BK, Muller DJ (2012) Proc Natl Acad Sci U S A 109:E3463CrossRefGoogle Scholar
  16. 16.
    Christopher JA, Brown J, Dore AS et al (2013) J Med Chem 56:3446CrossRefGoogle Scholar
  17. 17.
    Warne T, Moukhametzianov R, Baker JG et al (2011) Nature 469:241. doi:10.1038/nature09746 CrossRefGoogle Scholar
  18. 18.
    Shintre CA, Pike ACW, Li Q et al (2013) Proc Natl Acad Sci U S A 110:9710CrossRefGoogle Scholar
  19. 19.
    Hanson MA, Cherezov V, Griffith MT et al (2008) Structure 16:897. doi:10.1016/j.str.2008.05.001 CrossRefGoogle Scholar
  20. 20.
    Seddon AM, Curnow P, Booth PJ (2004) Biochim Biophys Acta Biomembr 1666:105. doi:10.1016/j.bbamem.2004.04.011 CrossRefGoogle Scholar
  21. 21.
    O’Malley MA, Helgeson ME, Wagner NJ, Robinson AS (2011) Biophys J 100:L11. doi:10.1016/j.bpj.2010.12.3698 CrossRefGoogle Scholar
  22. 22.
    O’Malley MA, Helgeson ME, Wagner NJ, Robinson AS (2011) Biophys J 101:1938. doi:10.1016/j.bpj.2011.09.018 CrossRefGoogle Scholar
  23. 23.
    Thompson AA, Liu JJ, Chun E et al (2011) Methods 55:310. doi:10.1016/j.ymeth.2011.10.011 CrossRefGoogle Scholar
  24. 24.
    Vukoti K, Kimura T, Macke L, Gawrisch K, Yeliseev A (2012) PLoS ONE 7:19. doi:10.1371/journal.pone.0046290 CrossRefGoogle Scholar
  25. 25.
    Oates J, Faust B, Attrill H, Harding P, Orwick M, Watts A (2012) Biochim Biophys Acta Biomembr 1818:2228. doi:10.1016/j.bbamem.2012.04.010 CrossRefGoogle Scholar
  26. 26.
    Zhang GJ, Liu HW, Yang L, Zhong YG, Zheng YZ (2000) J Membr Biol 175:53. doi:10.1007/s002320001054 CrossRefGoogle Scholar
  27. 27.
    Ding WX, Qi XR, Li P, Maitani Y, Nagai T (2005) Int J Pharm 300:38. doi:10.1016/j.ijpharm.2005.05.005 CrossRefGoogle Scholar
  28. 28.
    Lai MZ, Duzgunes N, Szoka FC (1985) Biochemistry 24:1646. doi:10.1021/bi00328a012 CrossRefGoogle Scholar
  29. 29.
    Dumas D, Muller S, Gouin F, Baros F, Viriot ML, Stoltz JF (1997) Arch Biochem Biophys 341:34CrossRefGoogle Scholar
  30. 30.
    Massey JB (1998) Biochim Biophys Acta Biomembr 1415:193. doi:10.1016/s0005-2736(98)00194-1 CrossRefGoogle Scholar
  31. 31.
    Skornick YG, Rong GH, Sindelar WF et al (1986) Cancer 58:650. doi:10.1002/1097-0142(19860801)58:3<650::aid-cncr2820580309>3.0.co;2-3 CrossRefGoogle Scholar
  32. 32.
    Hafez IM, Cullis PR (2000) Biochim Biophys Acta Biomembr 1463:107. doi:10.1016/s0005-2736(99)00186-8 CrossRefGoogle Scholar
  33. 33.
    Simoes S, Moreira JN, Fonseca C, Duzgunes N, de Lima MCP (2004) Adv Drug Deliv Rev 56:947. doi:10.1016/j.addr.2003.10.038 CrossRefGoogle Scholar
  34. 34.
    Straubinger RM (1993) Methods Enzymol 221:361. doi:10.1016/0076-6879(93)21030-c CrossRefGoogle Scholar
  35. 35.
    Connor J, Yatvin MB, Huang L (1984) Proc Natl Acad Sci U S A Biol Sci 81:1715. doi:10.1073/pnas.81.6.1715 CrossRefGoogle Scholar
  36. 36.
    Carafa M, Di Marzio L, Marianecci C et al (2006) Eur J Pharm Sci 28:385. doi:10.1016/j.ejps.2006.04.009 CrossRefGoogle Scholar
  37. 37.
    Skalko-Basnet N, Tohda M, Watanabe H (2002) Biol Pharm Bull 25:1583. doi:10.1248/bpb.25.1583 CrossRefGoogle Scholar
  38. 38.
    Lehtinen J, Hyvonen Z, Subrizi A, Bunjes H, Urtti A (2008) J Control Release 131:145. doi:10.1016/j.jconrel.2008.07.018 CrossRefGoogle Scholar
  39. 39.
    Allen TM (1994) Trends Pharmacol Sci 15:215. doi:10.1016/0165-6147(94)90314-x CrossRefGoogle Scholar
  40. 40.
    Klasczyk B, Panzner S, Lipowsky R, Knecht V (2010) J Phys Chem B 114:14941. doi:10.1021/jp1043943 CrossRefGoogle Scholar
  41. 41.
    Jorgensen WL, Tiradorives J (1988) J Am Chem Soc 110:1657. doi:10.1021/ja00214a001 CrossRefGoogle Scholar
  42. 42.
    Chandrasekhar J, Saunders M, Jorgensen WL (2001) J Comput Chem 22:1646CrossRefGoogle Scholar
  43. 43.
    Siu SWI, Pluhackova K, Bockmann RA (2012) J Chem Theory Comput 8:1459. doi:10.1021/ct200908r CrossRefGoogle Scholar
  44. 44.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926CrossRefGoogle Scholar
  45. 45.
    Vist MR, Davis JH (1990) Biochemistry 29:451. doi:10.1021/bi00454a021 CrossRefGoogle Scholar
  46. 46.
    Nose S (1984) Mol Phys 52:255. doi:10.1080/00268978400101201 CrossRefGoogle Scholar
  47. 47.
    Hoover WG (1985) Phys Rev A 31:1695. doi:10.1103/PhysRevA.31.1695 CrossRefGoogle Scholar
  48. 48.
    Parrinello M, Rahman A (1981) J Appl Phys 52:7182. doi:10.1063/1.328693 CrossRefGoogle Scholar
  49. 49.
    Nose S, Klein ML (1983) Mol Phys 50:1055. doi:10.1080/00268978300102851 CrossRefGoogle Scholar
  50. 50.
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577CrossRefGoogle Scholar
  51. 51.
    Hess B, Bekker H, Berendsen HJC, Fraaije J (1997) J Comput Chem 18:1463CrossRefGoogle Scholar
  52. 52.
    Miyamoto S, Kollman PA (1992) J Comput Chem 13:952CrossRefGoogle Scholar
  53. 53.
    Lindahl E, Hess B, van der Spoel D (2001) J Mol Model 7:306Google Scholar
  54. 54.
    Wennmohs F, Schindler M (2005) J Comput Chem 26:283. doi:10.1002/jcc.20163 CrossRefGoogle Scholar
  55. 55.
    Falck E, Patra M, Karttunen M, Hyvonen MT, Vattulainen I (2004) Biophys J 87:1076. doi:10.1529/biophysj.104.041368 CrossRefGoogle Scholar
  56. 56.
    Edholm O, Nagle JF (2005) Biophys J 89:1827. doi:10.1529/biophysj.105.064329 CrossRefGoogle Scholar
  57. 57.
    Hofsass C, Lindahl E, Edholm O (2003) Biophys J 84:2192. doi:10.1016/s0006-3495(03)75025-5 CrossRefGoogle Scholar
  58. 58.
    Chiu SW, Jakobsson E, Mashl RJ, Scott HL (2002) Biophys J 83:1842CrossRefGoogle Scholar
  59. 59.
    Aittoniemi J, Rog T, Niemela P, Pasenkiewicz-Gierula M, Karttunen M, Vattulainen I (2006) J Phys Chem B 110:25562. doi:10.1021/jp064931u CrossRefGoogle Scholar
  60. 60.
    Rog T, Pasenkiewicz-Gierula M (2003) Biophys J 84:1818CrossRefGoogle Scholar
  61. 61.
    Oldfield E, Meadows M, Rice D, Jacobs R (1978) Biochemistry 17:2727. doi:10.1021/bi00607a006 CrossRefGoogle Scholar
  62. 62.
    Urbina JA, Pekerar S, Le HB, Patterson J, Montez B, Oldfield E (1995) Biochim Biophys Acta Biomembr 1238:163. doi:10.1016/0005-2736(95)00117-l CrossRefGoogle Scholar
  63. 63.
    Jacobs R, Oldfield E (1979) Biochemistry 18:3280. doi:10.1021/bi00582a013 CrossRefGoogle Scholar
  64. 64.
    Ollila OHS, Rog T, Karttunen M, Vattulainen I (2007) J Struct Biol 159:311CrossRefGoogle Scholar
  65. 65.
    Poyry S, Rog T, Karttunen M, Vattulainen I (2008) J Phys Chem B 112:2922. doi:10.1021/jp7100495 CrossRefGoogle Scholar
  66. 66.
    Lindahl E, Edholm O (2000) Biophys J 79:426CrossRefGoogle Scholar
  67. 67.
    Needham D, McIntosh TJ, Evans E (1988) Biochemistry 27:4668. doi:10.1021/bi00413a013 CrossRefGoogle Scholar
  68. 68.
    Falck E, Patra M, Karttunen M, Hyvonen MT, Vattulainen I (2004) J Chem Phys 121:12676CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Waldemar Kulig
    • 1
  • Joona Tynkkynen
    • 1
  • Matti Javanainen
    • 1
  • Moutusi Manna
    • 1
  • Tomasz Rog
    • 1
  • Ilpo Vattulainen
    • 1
    • 2
  • Pavel Jungwirth
    • 3
    • 1
  1. 1.Department of PhysicsTampere University of TechnologyTampereFinland
  2. 2.MEMPHYS-Center for Biomembrane PhysicsUniversity of Southern DenmarkOdenseDenmark
  3. 3.Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations