The influence of anharmonic and solvent effects on the theoretical vibrational spectra of the guanine–cytosine base pairs in Watson–Crick and Hoogsteen configurations

  • Attila Bende
  • Cristina M. Muntean
Original Paper


The theoretical IR and Raman spectra of the guanine–cytosine DNA base pairs in Watson–Crick and Hoogsteen configurations were computed using DFT method with M06-2X meta-hybrid GGA exchange-correlation functional, including the anharmonic corrections and solvent effects. The results for harmonic frequencies and their anharmonic corrections were compared with our previously calculated values obtained with the B3PW91 hybrid GGA functional. Significant differences were obtained for the anharmonic corrections calculated with the two different DFT functionals, especially for the stretching modes, while the corresponding harmonic frequencies did not differ considerable. For the Hoogtseen case the H+ vibration between the G-C base pair can be characterized as an asymmetric Duffing oscillator and therefore unrealistic anharmonic corrections for normal modes where this proton vibration is involved have been obtained. The spectral modification due to the anharmonic corrections, solvent effects and the influence of sugar-phosphate group for the Watson-Crick and Hoogsteen base pair configurations, respectively, were also discussed. For the Watson-Crick case also the influence of the stacking interaction on the theoretical IR and Raman spectra was analyzed. Including the anharmonic correction in our normal mode analysis is essential if one wants to obtain correct assignments of the theoretical frequency values as compared with the experimental spectra.


Anharmonic frequencies Asymmetric Duffing oscillator DFT DNA Hoogsteen IR and Raman spectra Solvent effects Watson-Crick 



This work was supported by a grant of the Ministry of National Education, National Authority for Scientific Research CNCS–UEFISCDI, Romania, project number PN-II-ID-PCE-2012-4-0115. Thanks are due to National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania Data Center for providing computer facilities.

Supplementary material

894_2014_2113_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1.16 Mb)


  1. 1.
    Muntean CM, Dostál L, Misselwitz R, Welfle H (2005) DNA structure at low pH values, in the presence of Mn2+ ions: a Raman study. J Raman Spectrosc 36:1047–1051. doi: 10.1002/jrs.1404 CrossRefGoogle Scholar
  2. 2.
    Muntean CM, Puppels GJ, Greve J, Segers-Nolten GMJ (2002) Influence of Ca2+ cations on low pH-induced DNA structural transitions. Biopolymers 67(4–5):282–284. doi: 10.1002/bip.10116 CrossRefGoogle Scholar
  3. 3.
    Segers-Nolten GMJ, Sijtsema NM, Otto C (1997) Evidence for Hoogsteen GC base pairs in the proton-induced transition from right-handed to left-handed poly(dG-dC) poly(dG-dC). Biochemistry 36(43):13241–13247. doi: 10.1021/bi00177a032 CrossRefGoogle Scholar
  4. 4.
    Puppels GJ, Otto C, Greve J, Robert-Nicoud M, Arndt-Jovin DJ, Jovin TM (1994) Raman microspectroscopic study of low-pH-induced changes in DNA structure of polytene chromosomes. Biochemistry 33(11):3386–3395. doi: 10.1021/bi00177a032 CrossRefGoogle Scholar
  5. 5.
    Bende A, Muntean CM (2012) Solvent effect on the anharmonic vibrational frequencies in guanine-cytosine base pair. AIP Conf Proc 1425(1):5–8. doi: 10.1063/1.3681953 CrossRefGoogle Scholar
  6. 6.
    Courtois Y, Fromageot P, Guschlbauer W (1968) Protonated polynucleotide structures: 3. An optical rotatory dispersion study of the protonation of DNA. Eur J Biochem 6(4):493–501. doi: 10.1111/j.1432-1033.1968.tb00472.x CrossRefGoogle Scholar
  7. 7.
    Pulleyblank DE, Haniford DB, Morgan AR (1985) A structural basis for S1 nuclease sensitivity of double-stranded DNA. Cell 42(1):271–280. doi: 10.1016/S0092-8674(85)80122-7 CrossRefGoogle Scholar
  8. 8.
    Morari CI, Muntean CM (2003) Numerical simulations of the Raman spectra of GC Watson-Crick and Hoogsteen base pairs. Biopolymers 72(5):339–344. doi: 10.1002/bip.10418 CrossRefGoogle Scholar
  9. 9.
    Mooren MMW, Pulleyblank DE, Wijmenga SS, Blommers MJJ, Hilbers CW (1990) Polypurine/polypyrimidine hairpins form a triple helix structure at low pH. Nucleic Acids Res 18:6523–6529. doi: 10.1093/nar/18.22.6523 CrossRefGoogle Scholar
  10. 10.
    Bende A, Bogdan D, Muntean CM, Morari C (2011) Localization and anharmonicity of the vibrational modes for the GC Watson-Crick and Hoogsteen base pairs. J Mol Model 17(12):3265–3274CrossRefGoogle Scholar
  11. 11.
    Guschlbauer W, Courtois Y (1968) pH induced changes in optical activity of guanine nucleosides. FEBS Lett 1:183–186. doi: 10.1016/0014-5793(68)80055-9 CrossRefGoogle Scholar
  12. 12.
    Bende A (2010) Hydrogen bonding in the urea dimers and adenine–thymine DNA base pair: anharmonic effects in the intermolecular H-bond and intramolecular H-stretching vibrations. Theor Chem Accounts 125:253–268. doi: 10.1007/s00214-009-0645-6 CrossRefGoogle Scholar
  13. 13.
    Wang G-X, Ma XY, Wang J-P (2009) Anharmonic vibrational signatures of DNA bases and Watson–Crick base pairs. Chin J Chem Phys 22(6):563–570. doi: 10.1088/1674-0068/22/06/563-570 CrossRefGoogle Scholar
  14. 14.
    Galabov BS, Dudev T (1996) Vibrational intensities, vol. 22 of vibrational spectra and structure. Elsevier, AmsterdamGoogle Scholar
  15. 15.
    Zvereva EE, Shagidullin AR, Katsyuba SA (2011) Ab initio and DFT predictions of infrared intensities and Raman activities. J Phys Chem A 115:63–69. doi: 10.1021/jp108057p CrossRefGoogle Scholar
  16. 16.
    Reiher M, Neugebauer J (2003) A mode-selective quantum chemical method for tracking molecular vibrations applied to functionalized carbon nanotubes. J Chem Phys 118(4):1634–1641. doi: 10.1063/1.1523908 CrossRefGoogle Scholar
  17. 17.
    Luber S, Neugebauer J, Reiher M (2009) Intensity tracking for theoretical infrared spectroscopy of large molecules. J Chem Phys 130(6):064105. doi: 10.1063/1.3069834 CrossRefGoogle Scholar
  18. 18.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A38(6):3098–3100. doi: 10.1103/PhysRevA.38.3098 CrossRefGoogle Scholar
  19. 19.
    Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a manyelectron system. Phys Rev B54(16):16533–16539. doi: 10.1103/PhysRevB.54.16533 CrossRefGoogle Scholar
  20. 20.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241. doi: 10.1007/s00214-007-0310-x CrossRefGoogle Scholar
  21. 21.
    Schaefer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian-basis sets for atoms Li to Kr. J Chem Phys 97(4):2571–2577. doi: 10.1063/1.463096 CrossRefGoogle Scholar
  22. 22.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 09, revision C.01. Gaussian, Inc, WallingfordGoogle Scholar
  23. 23.
    Guerra CF, Bickelhaupt FM, Snijders JG, Baerends EJ (2000) Hydrogen bonding in DNA base pairs: reconciliation of theory and experiment. J Am Chem Soc 122:4117–4128. doi: 10.1021/ja993262d CrossRefGoogle Scholar
  24. 24.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. doi: 10.1021/cr9904009 CrossRefGoogle Scholar
  25. 25.
    Barone V, Cossi M, Tomasi J (1997) A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107:3210–3221. doi: 10.1063/1.474671%20 CrossRefGoogle Scholar
  26. 26.
    Allouche AR (2011) Gabedit—a graphical user interface for computational chemistry software. J Comput Chem 32:174–182. doi: 10.1002/jcc.21600 CrossRefGoogle Scholar
  27. 27.
    Clabo DA Jr, Allen WD, Remington RB, Yamaguchi Y, Schaefer HF III (1988) A systematic study of molecular vibrational anharmonicity and vibration—rotation interaction by self-consistent-field higher-derivative methods. Asymmetric top molecules. Chem Phys 123:187–239. doi: 10.1016/0301-0104(88)87271-9 CrossRefGoogle Scholar
  28. 28.
    Barone V (2005) Anharmonic vibrational properties by a fully automated second-order perturbative approach. J Chem Phys 122(1):014108. doi: 10.1063/1.1824881 CrossRefGoogle Scholar
  29. 29.
    Christiansen O (2003) Møller–Plesset perturbation theory for vibrational wave functions. J Chem Phys 119(12):5773–5781. doi: 10.1063/1.1601593 CrossRefGoogle Scholar
  30. 30.
    Melikova SM, Rutkowski KS, Gurinov AA, Denisov GS, Rospenk M, Shenderovich IG (2012) FTIR study of the hydrogen bond symmetry in protonated homodimers of pyridine and collidine in solution. J Mol Struct 1018:39–44. doi: 10.1016/j.molstruc.2011.12.027 CrossRefGoogle Scholar
  31. 31.
    Zundel G (2000) Hydrogen bonds with large proton polarizability and proton transfer processes in electrochemistry and biology. In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 111. Wiley, Chicago, pp 1–217CrossRefGoogle Scholar
  32. 32.
    Brzezinski B, Zundel G (1976) Symmetricaländ asymmetrical (N-H⋯N)+ hydrogen bonds. Infrared investigations. J Chem Soc Faraday Trans II 72:2127–2137. doi: 10.1039/F29767202127 CrossRefGoogle Scholar
  33. 33.
    Danninger W, Zundel G (1981) Intense depolarized Rayleigh scattering in Raman spectra of acids caused by large proton polarizabilities of hydrogen bonds. J Chem Phys 74:2769–2777. doi: 10.1063/1.441447 CrossRefGoogle Scholar
  34. 34.
    Brisker D, Peskin U (2006) Vibrational anharmonicity effects in electronic tunneling through molecular bridges. J Chem Phys 125(11):111103. doi: 10.1063/1.2353148 CrossRefGoogle Scholar
  35. 35.
    Ueda Y (1979) Randomly transitional phenomena in the system governed by Duffing’s equation. J Stat Phys 20:181–196. doi: 10.1007/BF01011512 CrossRefGoogle Scholar
  36. 36.
    Litak G, Borowiec M (2006) Oscillators with asymmetric single and double well potentials: transition to chaos revisited. Acta Mech 184:47–59. doi: 10.1007/s00707-006-0340-9 CrossRefGoogle Scholar
  37. 37.
    Fidder H, Yang M, Nibbering ETJ, Elsaesser T, Röttger K, Temps F (2013) N-H stretching vibrations of guanosine-cytidine base pairs in solution: ultrafast dynamics, couplings and line shapes. J Phys Chem A 117(5):845–854. doi: 10.1021/jp309237u CrossRefGoogle Scholar
  38. 38.
    Thomas M, Brehm M, Fligg R, Vöhringer P, Kirchner B (2013) Computing vibrational spectra from ab initio molecular dynamics. Phys Chem Chem Phys 15(18):6608–6622. doi: 10.1039/c3cp44302g CrossRefGoogle Scholar
  39. 39.
    Nir E, Janzen C, Imhof P, Kleinermanns K, de Vries MS (2002) Pairing of the nucleobases guanine and cytosine in the gas phase studied by IR–UV double-resonance spectroscopy and ab initio calculations. Phys Chem Chem Phys 4(5):732–739. doi: 10.1039/b107429f CrossRefGoogle Scholar
  40. 40.
    Nir E, Plützer C, Kleinermanns K, de Vries MS (2002) Properties of isolated DNA bases, base pairs and nucleosides examined by laser spectroscopy. Eur Phys J D 20:317–329. doi: 10.1140/epjd/e2002-00167-2 CrossRefGoogle Scholar
  41. 41.
    Nir E, Kleinermanns K, de Vries MS (2000) Pairing of isolated nucleic-acid bases in the absence of the DNA backbone. Nature 480:949–951. doi: 10.1038/35050053 Google Scholar
  42. 42.
    Mons M, Dimicoli I, Piuzzi F, Tardivel B, Elhanine M (2002) Tautomerism of the DNA base guanine and its methylated derivatives as studied by gas-phase infrared and ultraviolet spectroscopy. J Phys Chem A 106:5088–5094. doi: 10.1021/jp0139742 CrossRefGoogle Scholar
  43. 43.
    Muntean CM, Salehi M, Niebling S, Walkenfort B (2013) The influence of divalent metal ions on low pH induced LacDNA structural changes as probed with UV resonance Raman spectroscopy. J Raman Spectrosc 44:1693–1699. doi: 10.1002/jrs.4407 Google Scholar
  44. 44.
    Thomas M, Latorre F, Marquetand P (2013) Resonance Raman spectra of ortho-nitrophenol calculated by real-time time-dependent density functional theory. J Chem Phys 138:044101. doi: 10.1063/1.4776218 CrossRefGoogle Scholar
  45. 45.
    Deng H, Bloomfield VA, Benevides JM, Thomas GJ Jr (1999) Dependence of the Raman signature of genomic B-DNA on nucleotide base sequence. Biopolymers 50:656–666. doi: 10.1002/(SICI)1097-0282(199911)50:6%3c656::AID-BIP10%3e3.0.CO;2-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Molecular and Biomolecular Physics DepartmentNational Institute for Research and Development of Isotopic and Molecular TechnologiesCluj-NapocaRomania

Personalised recommendations