UV–vis absorption spectrum of a novel Ru(II) complex intercalated in DNA: [Ru(2,2′-bipy)(dppz)(2,2′-ArPy)]+

  • Agisilaos Chantzis
  • Thibaut Very
  • Stéphane Despax
  • Jean-Thomas Issenhuth
  • Alex Boeglin
  • Pascal Hébraud
  • Michel Pfeffer
  • Antonio Monari
  • Xavier Assfeld
Original Paper
Part of the following topical collections:
  1. Topical Collection on the occasion of Prof. Tim Clark’s 65th birthday


The synthesis of a new Ru(II) complex is reported. Its absorption spectrum when interacting with DNA in water was calculated at the hybrid quantum mechanics molecular mechanics level of theory and compared with experimental data. The vertical transitions were computed using time-dependent density functional theory in the linear response approximation. The complex and its environment were treated at the quantum mechanical and molecular mechanical levels, respectively. The effects of the environment were investigated in detail and conveniently classified into electrostatic and polarization effects. The latter were modeled using the computationally inexpensive “electronic response of the surroundings” method. It was found that the main features of the experimental spectrum are nicely reproduced by the theoretical calculations. Moreover, analysis of the most intense transitions utilizing the natural transition orbital formalism revealed important insights into their nature and their potential role in the irreversible oxidation of DNA, a phenomenon that could be relevant in the field of cancer therapy.


The Ru(II) complex intercalated into the DNA helix.


Electronic spectra TDDFT QM/MM Environmental effects Ru(II) complexes DNA 



XA expresses all of his gratitude to Professor Tim Clark, for his long-lasting support and for his tremendous contribution to the deciphering of noncovalent interactions. Support from Université de Lorraine is gratefully acknowledged. AM thanks CNRS for their funding of the “Chaire d’excellence.” Financial funding from the ANR through the ANR-09-BLAN-0191-01 “PhotoBioMet” project is also acknowledged.

Supplementary material

894_2014_2082_MOESM1_ESM.docx (84 kb)
ESM 1 (DOCX 83 kb)


  1. 1.
    Dumur F, Mayer CR, Hoang-Thi K, Ledoux-Rak I, Miomandre F, Clavier G, Dumas E, Méallet-Renault R, Frigoli M, Zyss J, Sécheresse F (2009) Inorg Chem 48:8120–8133CrossRefGoogle Scholar
  2. 2.
    Le Boulder T, Maury O, Bondon A, Costuas K, Amouyal E, Ledoux I, Zyss J, Le Bozec H (2003) J Am Chem Soc 125:12284–12299CrossRefGoogle Scholar
  3. 3.
    Coe BJ, Harris JA, Brunschwing BS, Asselberghs I, Clays K, Garín J, Orduna J (2005) J Am Chem Soc 127:13399–13410CrossRefGoogle Scholar
  4. 4.
    Coe BJ, Harris JA, Jones LA, Brunshwing BS, Song K, Clays K, Garín J, Orduna J, Coles SJ, Hursthouse MB (2005) J Am Chem Soc 127:4845–4859CrossRefGoogle Scholar
  5. 5.
    Coe BJ, Foxon SP, Harper EC, Helliwell M, Raftery J, Swanson CA, Brunshwing BS, Clays K, Franz E, Garín J, Orduna J, Horton PN, Hursthouse MB (2010) J Am Chem Soc 132:1706–1723CrossRefGoogle Scholar
  6. 6.
    Boubekeur-Lecaque L, Coe BJ, Clays K, Foerier S, Verbiest T, Asselberghs I (2008) J Am Chem Soc 130:3286–3287CrossRefGoogle Scholar
  7. 7.
    Grätzel M (2005) Inorg Chem 44:6841–6851CrossRefGoogle Scholar
  8. 8.
    Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) J Am Chem Soc 127:16835–16847Google Scholar
  9. 9.
    Jacquemin D, Perpète EA, Laurent AD, Assfeld X, Adamo C (2009) Phys Chem Chem Phys 11:1258–1262CrossRefGoogle Scholar
  10. 10.
    Martineau D, Beley M, Gros PC, Cazzanti S, Caramori S, Bignozzi CA (2007) Inorg Chem 46:2272–2277CrossRefGoogle Scholar
  11. 11.
    Grabulosa A, Beley M, Gros PC, Cazzanti S, Caramori S, Bignozzi CA (2009) Inorg Chem 48:8030–8036CrossRefGoogle Scholar
  12. 12.
    Monari A, Assfeld X, Beley M, Gros PC (2011) J Phys Chem A 115:3596–3603CrossRefGoogle Scholar
  13. 13.
    Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Muller E, Liska P, Vlachopoulos N, Grätzel M (1993) J Am Chem Soc 115:6382–6390CrossRefGoogle Scholar
  14. 14.
    Jia W-L, Hu Y-F, Gao J, Wang S (2006) Dalton Trans 1721–1728Google Scholar
  15. 15.
    Costa RD, Ortí E, Bolink HJ, Monti F, Accorsi G, Armaroli N (2012) Angew Chem Int Ed 124:8178–8182CrossRefGoogle Scholar
  16. 16.
    Bolhuis A, Hand L, Marshall JE, Richards AD, Rodger A, Aldrich-Wright J (2011) J Eur J Pharm Sci 42:313–317CrossRefGoogle Scholar
  17. 17.
    Levina A, Mitra A, Lay PA (2009) Metallomics 1:458–470CrossRefGoogle Scholar
  18. 18.
    Gill MR, Thomas TA (2012) Chem Soc Rev 41:3179–3192CrossRefGoogle Scholar
  19. 19.
    Hartingera CG, Zorbas-Seifriedb S, Jakupeca MA, Kynastc B, Zorbasb H, Keppler BK (2006) J Inorg Biochem 100:891–904CrossRefGoogle Scholar
  20. 20.
    Satoh M, Naganuma A, Imura N (1988) Cancer Chemother Pharmacol 21:176–178Google Scholar
  21. 21.
    Rajeswaran A, Trojan A, Burnand B, Giannelli M (2008) Lung Cancer 59:1–11CrossRefGoogle Scholar
  22. 22.
    Metcalfe C, Thomas JA (2003) Chem Soc Rev 32:215–224CrossRefGoogle Scholar
  23. 23.
    Zeglis BM, Pierre VC, Barton JK (2007) Chem Commun 44:4565–4579CrossRefGoogle Scholar
  24. 24.
    Friedman AE, J–C C, Sauvage J-P, Turro NJ, Barton JK (1990) J Am Chem Soc 112:4960–4962CrossRefGoogle Scholar
  25. 25.
    Matson M, Svensson FR, Nordén B, Lincoln P (2011) J Phys Chem B 115:1706–1711CrossRefGoogle Scholar
  26. 26.
    Ortmans I, Elias B, Kelly JM, Moucheron C, Kirsch-De Mesmaeker A (2004) Dalton Trans 668–676Google Scholar
  27. 27.
    Liu JG, B–H Y, Li H, Ji L-N, R–H L, Zhou J-Y (1999) J Inorg Biochem 73:117–123CrossRefGoogle Scholar
  28. 28.
    Herman S, Ghosh S, Defrancq E, Kirsch-De Mesmaeker A (2008) J Phys Org Chem 21:670–681CrossRefGoogle Scholar
  29. 29.
    Fantacci S, De Angelis F, Sgamellotti A, Re N (2004) Chem Phys Lett 396:43–48CrossRefGoogle Scholar
  30. 30.
    Ambrosek D, Loos P-F, Assfeld X, Daniel C (2010) J Inorg Biochem 104:893–901CrossRefGoogle Scholar
  31. 31.
    Atsumi M, González L, Daniel C (2007) J Photochem Photobiol A 190:310–320CrossRefGoogle Scholar
  32. 32.
    Very T, Despax S, Hébraud P, Monari A, Assfeld X (2012) Phys Chem Chem Phys 14:12496–12504CrossRefGoogle Scholar
  33. 33.
    Etienne T, Very T, Perpète EA, Monari A, Assfeld X (2013) J Phys Chem B 117:4973–4980CrossRefGoogle Scholar
  34. 34.
    Alary F, Heully J-L, Bijeire L, Vicendo P (2007) Inorg Chem 46:3154–3165CrossRefGoogle Scholar
  35. 35.
    Liu Y, Hammitt R, Lutterman DA, Thummel RP, Turro C (2007) Inorg Chem 46:6011–6021CrossRefGoogle Scholar
  36. 36.
    Sun Y, Collins SN, Joyce LE, Turro C (2010) Inorg Chem 49:4257–4262CrossRefGoogle Scholar
  37. 37.
    Broo A, Lincoln P (1997) Inorg Chem 36:2544–2553CrossRefGoogle Scholar
  38. 38.
    Pourtois G, Beljonne D, Moucheron C, Schumm S, Kirsch-De Mesmaeker A, Lazzaroni R, Brédas J-L (2004) J Am Chem Soc 126:683–692CrossRefGoogle Scholar
  39. 39.
    Fantacci S, De Angelis F, Sgamellotti A, Marrone A, Re N (2005) J Am Chem Soc 127:14144–14145CrossRefGoogle Scholar
  40. 40.
    Lutterman DA, Chouai A, Liu Y, Sun Y, Stewart CD, Dunbar KR, Turro CJ (2008) J Am Chem Soc 130:1163–1170CrossRefGoogle Scholar
  41. 41.
    Batista ER, Martin RL (2005) J Phys Chem A 109:3128–3133CrossRefGoogle Scholar
  42. 42.
    Charlot MF, Aukauloo A (2007) J Phys Chem A 111:11661–11672CrossRefGoogle Scholar
  43. 43.
    Laurent AD, Mironov VA, Chapagain PP, Nemukhin AV, Krylov AI (2012) J Phys Chem B 116:12426–12440CrossRefGoogle Scholar
  44. 44.
    Welke K, Främcke JS, Watanabe HC, Hegemann P, Elstner M (2011) J Phys Chem B 115:15119–15128CrossRefGoogle Scholar
  45. 45.
    Caprasecca S, Curutchet C, Mennucci B (2012) J Chem Theory Comp 8:4462–4473CrossRefGoogle Scholar
  46. 46.
    Adamo C, Jacquemin D (2013) Chem Soc Rev 42:845–856CrossRefGoogle Scholar
  47. 47.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  48. 48.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  49. 49.
    Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298CrossRefGoogle Scholar
  50. 50.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  51. 51.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Calwell JW, Kollman PA (2002) J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  52. 52.
    Frisch MJ, Trucks JW, Schlegel HB, et al (2009) Gaussian 09, revision B.01. Gaussian, Inc., WallingfordGoogle Scholar
  53. 53.
    Ponder JW (2013) TINKER—software tools for molecular design.
  54. 54.
    Rick SW, Stuart SJ (2002) Rev Comput Chem 18:89Google Scholar
  55. 55.
    Monari A, Rivail J-L, Assfeld X (2014) Acc Chem Res 46:596–603CrossRefGoogle Scholar
  56. 56.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094CrossRefGoogle Scholar
  57. 57.
    Chantzis A, Very T, Monari A, Assfeld X (2012) J Chem Theor Comput 8:1536–1541CrossRefGoogle Scholar
  58. 58.
    Chantzis A, Very T, Daniel C, Monari A (2013) Chem Phys Lett 578:133–137Google Scholar
  59. 59.
    Fetzer L, Boff B, Ali M, Xiangjun M, Collin JP, Sirlin C, Gaiddon C, Pfeffer M (2011) Dalton Trans 40:8869–8878CrossRefGoogle Scholar
  60. 60.
    Freedmann DA, Evjau JK, Panije MK, Mann KR (2001) Inorg Chem 40:5711–5715CrossRefGoogle Scholar
  61. 61.
    Dickeson JE, Summers LA (1970) Aust J Chem 23:1023–1027CrossRefGoogle Scholar
  62. 62.
    Gosmini G, Bassene-Ernst C, Durandetti M (2009) Tetrahedron 65:6141–6146CrossRefGoogle Scholar
  63. 63.
    Martínez L, Andrade R, Birgin EG, Martínez JM (2009) J Comput Chem 30:2157–2164CrossRefGoogle Scholar
  64. 64.
    Allinger LN, Zhou X, Bergsma J (1994) J Mol Struct (THEOCHEM) 312:69–83CrossRefGoogle Scholar
  65. 65.
    Brandt P, Norrby T, Åkermark B, Norrby P-O (1998) Inorg Chem 37:4120–4127Google Scholar
  66. 66.
    Martin RL (2003) J Chem Phys 118:4775–4777CrossRefGoogle Scholar
  67. 67.
    Monari A, Very T, Rivail J-L, Assfeld X (2012) Comput Theor Chem 990:119–15CrossRefGoogle Scholar
  68. 68.
    Monari A, Very T, Rivail J-L, Assfeld X (2012) Theor Chem Acc 131:1221CrossRefGoogle Scholar
  69. 69.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  70. 70.
    Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620CrossRefGoogle Scholar
  71. 71.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  72. 72.
    Isegawa M, Peverati R, Truhlar DG (2012) J Chem Phys 137:244104CrossRefGoogle Scholar
  73. 73.
    Jacquemin D, Perpète EA, Ciofini I, Adamo C (2011) Theor Chem Acc 128:127–136Google Scholar
  74. 74.
    Guo H-B, He F, Gu B, Liang L, Smith JC (2012) J Phys Chem A 116:11870–11879CrossRefGoogle Scholar
  75. 75.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  76. 76.
    Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728Google Scholar
  77. 77.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654Google Scholar
  78. 78.
    Roy LE, Hay PJ, Martin RL (2008) J Chem Theory Comput 4:1029–1031Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Agisilaos Chantzis
    • 1
    • 2
  • Thibaut Very
    • 1
    • 2
  • Stéphane Despax
    • 3
  • Jean-Thomas Issenhuth
    • 4
  • Alex Boeglin
    • 3
  • Pascal Hébraud
    • 3
  • Michel Pfeffer
    • 4
  • Antonio Monari
    • 1
    • 2
  • Xavier Assfeld
    • 1
    • 2
  1. 1.Université de Lorraine Nancy, Théorie, Modélisation, Simulation, SRSMC UMR 7565Vandoeuvre-lès-NancyFrance
  2. 2.CNRS, Théorie, Modélisation, Simulation, SRSMC UMR 7565Vandoeuvre-lès-NancyFrance
  3. 3.IPCMS CNRS UMR 7504StrasbourgFrance
  4. 4.Institut de ChimieUMR 7177, CNRS/Université de Strasbourg, Laboratoire de Synthèses Métallo-InduitesStrasbourgFrance

Personalised recommendations