Journal of Molecular Modeling

, Volume 19, Issue 9, pp 3813–3819 | Cite as

Molecular dynamics simulations of hydrogen storage capacity of few-layer graphene

  • Cheng-Da Wu
  • Te-Hua Fang
  • Jian-Yuan Lo
  • Yu-Lun Feng
Original Paper

Abstract

The adsorption of molecular hydrogen on few-layer graphene (FLG) structures is studied using molecular dynamics simulations. The interaction between graphene and hydrogen molecules is described by the Lennard-Jones potential. The effects of pressure, temperature, number of layers in a FLG, and FLG interlayer spacing are evaluated in terms of molecular trajectories, binding energy, binding force, and gravimetric hydrogen storage capacity (HSC). The simulation results show that the effects of temperature and pressure can offset each other to improve HSC. An insufficient interlayer spacing (0.35 nm) largely limits the HSC of FLG because hydrogen adsorbed at the edges of the graphene prevents more hydrogen from entering the structure. A low temperature (77 K), a high pressure, a large number of layers in a FLG, and a large FLG interlayer spacing maximize the HSC.

Keywords

Adsorption Few-layer graphene Hydrogen Molecular dynamics Pressure 

References

  1. 1.
    Hwang JJ (2012) Review on development and demonstration of hydrogen fuel cell scooters. Renew Sustain Energy Rev 16(6):3803–3815CrossRefGoogle Scholar
  2. 2.
    Lee C, Wei X, Kysar W, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRefGoogle Scholar
  3. 3.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRefGoogle Scholar
  4. 4.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRefGoogle Scholar
  5. 5.
    Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358CrossRefGoogle Scholar
  6. 6.
    Wu CD, Fang TH, Lin JF (2012) Atomic-scale simulations of material behaviors and tribology properties for FCC and BCC metal films. Mater Lett 80:59–62CrossRefGoogle Scholar
  7. 7.
    Sung PH, Wu CD, Fang TH, Weng CI (2012) Size effect on shape recovery and induced strain of NiTi nanowires. Appl Surf Sci 258(18):7064–7069CrossRefGoogle Scholar
  8. 8.
    Sung PH, Wu CD, Fang TH (2012) Effects of temperature, loading rate, and nanowire length on torsional deformation and mechanical properties of aluminum nanowires investigated using molecular dynamics simulation. J Phys D: Appl Phys 45:215303-1-8 doi:10.1088/0022-3727/45/21/215303
  9. 9.
    Hsu QC, Lin YT, Chou DC, Wu CD (2012) Study on nanoimprint formability considered anti-adhesion layer for the (CH2)n polymer material by molecular dynamics simulation. Curr Nanosci 8(3):424–431CrossRefGoogle Scholar
  10. 10.
    Wu CD, Fang TH, Wu TT (2012) Effects of humidity and temperature on laser-assisted dip-pen nanolithography array studied using molecular dynamics simulations. J Colloid Interface Sci 372(1):170–175CrossRefGoogle Scholar
  11. 11.
    Wu CD, Fang TH, Lin JF (2012) Effects of tip gap, deposition temperature, holding time, and pull-off velocity on dip-pen lithography using molecular dynamics simulation. J Appl Phys 111 (10):103521-1-8 doi:10.1063/1.4720576 Google Scholar
  12. 12.
    Herrero CP, Ramirez R (2010) Diffusion of hydrogen in graphite: a molecular dynamics simulation. J Phys D: Appl Phys 43:255402-1-7 doi:10.1088/0022-3727/43/25/255402 Google Scholar
  13. 13.
    Ferro Y, Marinelli F, Allouche A (2002) Density functional theory investigation of H adsorption and H2 recombination on the basal plane and in the bulk of graphite: connection between slab and cluster model. J Chem Phys 116:8124–8131CrossRefGoogle Scholar
  14. 14.
    Dino WA, Miura Y, Nakanishi H, Kasai H, Sugimoto T (2003) Stable hydrogen configurations between graphite layers. J Phys Soc Jpn 72:1867–1870CrossRefGoogle Scholar
  15. 15.
    Lamari FD, Levesque D (2011) Hydrogen adsorption on functionalized graphene. Carbon 49:5196–5200CrossRefGoogle Scholar
  16. 16.
    Tozzini V, Pellegrini V (2011) Reversible hydrogen storage by controlled buckling of graphene layers. J Phys Chem C 115:25523–25528CrossRefGoogle Scholar
  17. 17.
    Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: a two-dimensional hydrocarbon. Phys Rev B 75:153401-1-4 doi:10.1103/PhysRevB.75.153401
  18. 18.
    Haile JM (1992) Molecular dynamics simulation: elementary methods. Wiley, New YorkGoogle Scholar
  19. 19.
    Simon JM, Haas OE, Kjelstrup S (2010) Adsorption and desorption of H2 on graphite by molecular dynamics simulations. J Phys Chem C 114:10212–10220CrossRefGoogle Scholar
  20. 20.
    Henwood D, David Carey J (2007) Ab initio investigation of molecular hydrogen physisorption on graphene and carbon nanotubes. Phys Rev B 75:245413-1-10 doi:10.1103/PhysRevB.75.245413
  21. 21.
    Dimitrakakis GK, Tylianakis E, Froudakis GE (2008) Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett 8:3166–3170CrossRefGoogle Scholar
  22. 22.
    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35CrossRefGoogle Scholar
  23. 23.
    Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9:3012–3015CrossRefGoogle Scholar
  24. 24.
    Poirier E, Chahine R, Benard P, Cossement D, Lafi L, Melancon E, Bose TK, Desilets S (2004) Storage of hydrogen on single-walled carbon nanotubes and other carbon structures. Appl Phys A 78:961–967CrossRefGoogle Scholar
  25. 25.
    Wang L, Stuckert NR, Yang RT (2011) Unique hydrogen adsorption properties of graphene. AICHE J 57:2902–2908CrossRefGoogle Scholar
  26. 26.
    Tibbetts GG, Meisner GP, Olk CH (2001) Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon 39:2291–2301CrossRefGoogle Scholar
  27. 27.
    Zhu HW, Ci LJ, Chen A, Mao ZQ, Xu CL, Xiao X, Wei BQ, Liang J, Wu DH (2000) Hydrogen uptake in multi-walled carbon nanotubes at room temperature. In: Mao ZQ, Veziroglu TN (eds) Hydrogen energy progress XIII, Proceedings of the 13th world hydrogen energy conference. International association for hydrogen energy, Beijing, pp 560–564Google Scholar
  28. 28.
    Wu HB, Chen P, Lin J, Tan KL (2000) Hydrogen uptake by carbon nanotubes. Int J Hydrogen Energy 25:261–265CrossRefGoogle Scholar
  29. 29.
    Browning DJ, Gerrard ML, Laakeman JB, Mellor IM, Mortimer RJ, Turpin MC (2000) Investigation of the hydrogen storage capacities of carbon nanofibres prepared from an ethylene precursor. In: Mao ZQ, Veziroglu TN (eds) Hydrogen energy progress XIII, Proceedings of the 13th world hydrogen energy conference. International association for hydrogen energy, Beijing, pp 554–559Google Scholar
  30. 30.
    Gupta BK, Awasthi K, Srivastava ON (2000) New Carbon Variants: Graphitic nanofibres and nanotubules as hydrogen storage materials. In: Mao ZQ, Veziroglu TN (eds) Hydrogen energy progress XIII, Proceedings of the 13th world hydrogen energy conference. International association for hydrogen energy, Beijing, pp 487–492Google Scholar
  31. 31.
    Darkrim F, Levesque D (2000) High adsorptive property of opened carbon nanotubes at 77 K. J Phys Chem B 104:6773–6776CrossRefGoogle Scholar
  32. 32.
    Phillips AB, Shivaram BS (2008) High capacity hydrogen absorption in transition metal-ethylene complexes observed via nanogravimetry. Phys Rev Lett 100:105505-1-4 doi:10.1103/PhysRevLett.100.105505
  33. 33.
    Kalamse V, Wadnerkar N, Chaudhari A (2013) Multi-functionalized naphthalene complexes for hydrogen storage. Energy 49:469–474CrossRefGoogle Scholar
  34. 34.
    Phillips AB, Shivaram BS, Myneni GR (2012) Hydrogen absorption at room temperature in nanoscale titanium benzene complexes. Int J Hydrogen Energy 37:1546–1550CrossRefGoogle Scholar
  35. 35.
    Kalamse V, Wadnerkar N, Deshmukh A, Chaudhari A (2012) Interaction of molecular hydrogen with Ni doped ethylene and acetylene complex. Int J Hydrogen Energy 37:5114–5121CrossRefGoogle Scholar
  36. 36.
    Kalamse V, Wadnerkar N, Chaudhari A (2010) Hydrogen storage in C2H4V and C2H4V+ organometallic compounds. J Phys Chem C 114:4704–4709CrossRefGoogle Scholar
  37. 37.
    Kalamse V, Wadnerkar N, Deshmukh A, Chaudhari A (2012) C2H2M (M = Ti, Li) complex: a possible hydrogen storage material. Int J Hydrogen Energy 37:3727–3732CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cheng-Da Wu
    • 1
  • Te-Hua Fang
    • 1
  • Jian-Yuan Lo
    • 1
  • Yu-Lun Feng
    • 1
  1. 1.Department of Mechanical EngineeringNational Kaohsiung University of Applied SciencesKaohsiung 807Taiwan

Personalised recommendations