Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 8, pp 3411–3425 | Cite as

Density functional theory investigation of cocaine water complexes

  • Lakshmipathi Senthilkumar
  • Palanivel Umadevi
  • Kumaranathapuram Natarajan Sweety Nithya
  • Ponmalai Kolandaivel
Original Paper

Abstract

Twenty cocaine–water complexes were studied using density functional theory (DFT) B3LYP/6-311++G** level to understand their geometries, energies, vibrational frequencies, charge transfer and topological parameters. Among the 20 complexes, 12 are neutral and eight are protonated in the cocaine-water complexes. Based on the interaction energy, the protonated complexes are more stable than the neutral complexes. In both complexes, the most stable structure involves the hydrogen bond with water at nitrogen atom in the tropane ring and C = O groups in methyl ester. Carbonyl groups in benzoyl and methyl ester is the most reactive site in both forms and it is responsible for the stability order. The calculated topological results show that the interactions involved in the hydrogen bond are electrostatic dominant. Natural bond orbital (NBO) analysis confirms the presence of hydrogen bond and it supports the stability order. Atoms in molecules (AIM) and NBO analysis confirms the C-H · · · O hydrogen bonds formed between the cocaine-water complexes are blue shifted in nature.

Keyword

Blue shift Cocaine Density difference plot DFT NBO analysis Red shift 

Notes

Acknowledgments

The authors are grateful for the use of computational resources High Performance Computing Facility (HPCF) of Department of Science and Technology at University of Hyderabad.

Supplementary material

894_2013_1866_MOESM1_ESM.doc (1.7 mb)
Fig. S1 The optimized protonated and neutral cocaine-water complexes (boat and chair conformations) label indicates the following as P = protonated, N = neutral, b = boat, c = chair conformations, be = carbonyl group (phenyl group), me = methyl ester group, n = nitrogen, tro = tropane, metn = methyl group (nitrogen). (DOC 1,787kb)

References

  1. 1.
    Jeffrey GA, Saenger W (1994) Hydrogen bonding in biological structures. Springer, New YorkGoogle Scholar
  2. 2.
    Singh DK, Asthana BP, Srivastava SK (2012) J Mol Model 18:3541–3552CrossRefGoogle Scholar
  3. 3.
    Huang Z, Dai Y, Yu L, Wang H (2011) J Mol Model 17:2609–2621CrossRefGoogle Scholar
  4. 4.
    Esrafili MD, Behzadi H, Hadipour NL (2008) Chem Phys 348:175–180CrossRefGoogle Scholar
  5. 5.
    Hobza P, Havlas Z (2000) Chem Rev 100:4253–4264CrossRefGoogle Scholar
  6. 6.
    Takhashi O, Kohno Y, Saito K (2003) Chem Phys Lett 378:509–515CrossRefGoogle Scholar
  7. 7.
    Reynisson J, Steenken S (2003) J Mol Struct (Theochem) 635:133–139CrossRefGoogle Scholar
  8. 8.
    Suhai S (1994) J Chem Phys 101:9766–9782CrossRefGoogle Scholar
  9. 9.
    Zhang C, Hu J, Chen S, Ji F (2010) J Mol Model 16:1391–1399CrossRefGoogle Scholar
  10. 10.
    Guo H, Karplus M (1994) J Phys Chem 98:7104–7105CrossRefGoogle Scholar
  11. 11.
    Born B, Weingartner H, Brundermann E, Havenith M (2009) J Am Chem Soc 131:3752–3755CrossRefGoogle Scholar
  12. 12.
    Isaacs ED, Shukla A, Platzman PM, Hamann DR, Barbiellini B, Tulk CA (1999) Phys Rev Lett 82:600–603CrossRefGoogle Scholar
  13. 13.
    Ghanty TK, Staroverov VN, Koren PR, Davidson ER (2000) J Am Chem Soc 122:1210–1214CrossRefGoogle Scholar
  14. 14.
    Desiraju GR (2002) Acc Chem Res 35:565–573CrossRefGoogle Scholar
  15. 15.
    Hobza P, Pirko VS, Selzle HL, Schlag EW (1998) J Phys Chem A 102:2501–2504CrossRefGoogle Scholar
  16. 16.
    Legon AC, Wallwork AL, Warner HE (1992) Chem Phys Lett 191:98–101CrossRefGoogle Scholar
  17. 17.
    Legon AC, Roberts BP, Wallwork AL (1990) Chem Phys Lett 173:107–114CrossRefGoogle Scholar
  18. 18.
    Steiner T, Desiraju GR (1998) Chem Commun 891–892Google Scholar
  19. 19.
    Rincon David A, Cordeiro M, Natalia DS, Mosquera Ricardo A (2009) J Phys Chem A 113:13937–13942CrossRefGoogle Scholar
  20. 20.
    Gawin FH Jr, Ellinwood EH (1988) Eng J Med 318:1173–1182CrossRefGoogle Scholar
  21. 21.
    Landry DW (1997) Sci Am 276:28–31CrossRefGoogle Scholar
  22. 22.
    Singh S (2000) Chem Rev 100:925–1024CrossRefGoogle Scholar
  23. 23.
    Sparenborg S, Vocci F, Zukin S (1997) Drug Alcohol Depend 48:149–151CrossRefGoogle Scholar
  24. 24.
    Landry DW, Zhao K, Yang GXQ, Glickman M, Geogiadis TM (1993) Science 259:1899–901CrossRefGoogle Scholar
  25. 25.
    Yang G, Chun J, Arakawa Uramoto H, Wang X, Gawinowicz MA, Zhao K, Landry DW (1996) J Am Chem Soc 118:5881–5890CrossRefGoogle Scholar
  26. 26.
    Gadjou C, Danger Y, Sandouk P, Scherrmann J-M, Blanchard D, Follea G, Herve (2006) Int J Biomed 2:53–58Google Scholar
  27. 27.
    Lape M, Paula S, Ball WJ Jr (2010) Eur J Med Chem 45:2291–2298CrossRefGoogle Scholar
  28. 28.
    Liu J, Hamza A, Zhan CG (2009) J Am Chem Soc 131:11964–11975CrossRefGoogle Scholar
  29. 29.
    Sinnema A, Maat L, van der Gugten AJ, Beyerman HC (1968) Recl Trav Chim Pays-Bas 87:1027–1041CrossRefGoogle Scholar
  30. 30.
    Ivy Carroll F, Coleman ML, Lewin AH (1982) J Org Chem 47:13–19CrossRefGoogle Scholar
  31. 31.
    Brunetto R, Gutierrez L, Delgado Y, Gallignani M, Burguera L, Burguera M (2003) Anal Bioanal Chem 375:534–538Google Scholar
  32. 32.
    Mosquera R, Uriate E (1989) J Mol Struct 195:325–333CrossRefGoogle Scholar
  33. 33.
    Villar HO, Loew GH (1990) J Comput Chem 11:1111–1118CrossRefGoogle Scholar
  34. 34.
    Froimowitz M (1993) J Comput Chem 14:934–943CrossRefGoogle Scholar
  35. 35.
    Zhu N, Harrison A, Trudell ML, Klein-Steven CL (1999) Struct Chem 10:91–103CrossRefGoogle Scholar
  36. 36.
    Rincon David A, Natalia M, Cordeiro DS, Mosquera RA, Borges F (2009) Chem Phys Lett 467:249–254CrossRefGoogle Scholar
  37. 37.
    Sherer EC, Turner GM, Lively TN, Landry DW, Shields GC (1996) J Mol Model 2:62–69CrossRefGoogle Scholar
  38. 38.
    Sherer EC, Yang G, Turner GM, Shields GC, Landry DW (1997) J Phys Chem A 101:8526–8529CrossRefGoogle Scholar
  39. 39.
    Zhan CG, Landry DW (2001) J Phys Chem A 105:1296–1301CrossRefGoogle Scholar
  40. 40.
    Zhan CG, Deng S-X, Skiba JG, Hayes BA, Tschampel SM, Shields GC, Landry DW (2005) J Comput Chem 26:980–986CrossRefGoogle Scholar
  41. 41.
    Fatta-Kassinos D, Meric S, Nikolaou A (2011) Anal Bioanal Chem 399:251–275CrossRefGoogle Scholar
  42. 42.
    Dickerson TJ, Janda KD (2005) The AAPS J 7:E579–E586CrossRefGoogle Scholar
  43. 43.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  44. 44.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206CrossRefGoogle Scholar
  45. 45.
    Becke A (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  46. 46.
    Becke A (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  47. 47.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–556CrossRefGoogle Scholar
  48. 48.
    MORPHY98 (1998) A program written by Popelier PLA with a contribution from. Bone RGA, UMIST, Manchester, England, EUGoogle Scholar
  49. 49.
    Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr. Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J W, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc, Wallingford, CT Google Scholar
  50. 50.
    Yang B, Wright J, Eldefrawi ME, Pou S, Mackerell AD Jr (1994) J Am Chem Soc 116:8722–8732CrossRefGoogle Scholar
  51. 51.
    Senthilkumar L, Kolandaivel P (2006) J Mol Struct 791:149–157CrossRefGoogle Scholar
  52. 52.
    Senthilkumar L, Ghanty TK, Kolandaivel P, Ghosh SK (2012) Int J Quant Chem 112:2787–2793CrossRefGoogle Scholar
  53. 53.
    Chidangil S, Shukla MK, Mishra PC (1998) J Mol Model 4:250–258CrossRefGoogle Scholar
  54. 54.
    Bader RFW (2000) Atoms in molecules, a quantum theory. Clarendon, OxfordGoogle Scholar
  55. 55.
    Popelier P (2000) Atoms in molecules an introduction. Pearson Education, LondonGoogle Scholar
  56. 56.
    Bader RFW (1991) Chem Rev 91:893–928CrossRefGoogle Scholar
  57. 57.
    Paul BK, Mahanta S, Singh RB, Guchhait N (2010) J Phys Chem A 114:2618–2627CrossRefGoogle Scholar
  58. 58.
    Mahanta S, Paul BK, Singh RB, Guchhait N (2011) J Comput Chem 32:1–14CrossRefGoogle Scholar
  59. 59.
    Woodford JN (2007) J Phys Chem A 111:8519–8530CrossRefGoogle Scholar
  60. 60.
    Palusiak M, Simon S, Sola M (2006) J Org Chem 71:5241–5248CrossRefGoogle Scholar
  61. 61.
    Koch U, Popelier PLA (1995) J Phys Chem 99:9747–9754CrossRefGoogle Scholar
  62. 62.
    Popelier PLA (1998) J Phys Chem A 102:1873–1878CrossRefGoogle Scholar
  63. 63.
    Galvez O, Gomez PC, Pacios LF (2001) J Chem Phys 115:11166–11184CrossRefGoogle Scholar
  64. 64.
    Galvez O, Gomez PC, Pacios LF (2003) J Chem Phys 118:4878–4895CrossRefGoogle Scholar
  65. 65.
    Senthilkumar L, Ghanty TK, Ghosh SK, Kolandaivel P (2006) J Phys Chem A 110:12623–12628CrossRefGoogle Scholar
  66. 66.
    Senthilkumar L, Ghanty TK, Ghosh SK (2005) J Phys Chem A 109:7575–7582CrossRefGoogle Scholar
  67. 67.
    Shankar R, Kolandaivel P, Senthilkumar L (2011) J Phys Org Chem 24:553–567CrossRefGoogle Scholar
  68. 68.
    Arnold WD, Oldfied E (2000) J Am Chem Soc 122:12835–12841CrossRefGoogle Scholar
  69. 69.
    Lu YX, Zou JW, Wang YH, Jiang YJ, Yu QS (2007) J Phys Chem A 111:10781–10788CrossRefGoogle Scholar
  70. 70.
    Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154–11161CrossRefGoogle Scholar
  71. 71.
    Crèmer D, Kraka E (1984) Angew Chem Int Ed Engl 23:627–628CrossRefGoogle Scholar
  72. 72.
    Weinhold F (1998) In: Schleyer PR, Allinger NLT, Gasteiger Clark J, Kollman PA, Schaefer HFS III, Schreiner PR III (eds) Encyclopedia of computational chemistry, vol 3. Wiley, Chichester, p 792Google Scholar
  73. 73.
    Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor- acceptor perspective. Cambridge University Press, New YorkCrossRefGoogle Scholar
  74. 74.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  75. 75.
    Hrynchuk Ronald J, Barton Richard J, Robertson Beverley E (1983) Can J Chem 61:481–487CrossRefGoogle Scholar
  76. 76.
    Zheng F, Zhan CG (2008) Org Biomol Chem 6:836–843CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lakshmipathi Senthilkumar
    • 1
  • Palanivel Umadevi
    • 1
  • Kumaranathapuram Natarajan Sweety Nithya
    • 1
  • Ponmalai Kolandaivel
    • 1
  1. 1.Department of PhysicsBharathiar UniversityCoimbatoreIndia

Personalised recommendations