Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 9, pp 3543–3549 | Cite as

Theoretical study of the pre- and post-translational effects of adenine and thymine tautomers and methyl derivatives

  • Noel Gardner
  • David Magers
  • Glake HillJr.
Original Paper

Abstract

The study of pre-translational effects (ionization, tautomerization) and post-translational effects (methylation) of adenine and thymine has only recently been the focus of some studies. These effects can potentially help regulate gene expression as well as potentially disrupt normal gene function. Because of this wide array of roles, greater insight into these effects in deoxyribonucleic acids (DNA) are paramount. There has been considerable research of each phenomenon (tautomerization, methylation and ionization) individually. In this work, we attempt to shed light upon the pre-translational effects and post translational effects of adenine and thymine by investigating the electron affinities (EAs) and ionization potentials (IPs) of the major and minor tautomers and their methyl derivatives. We performed all calculations using the density functional theory (DFT) B3LYP functional accompanied with 6-311G(d,p), 6-311+G(d,p) and 6-311++G(df,pd) basis sets. Our results reveal that the thymine tautomer has a higher EA and IP than the adenine tautomers. The higher EA suggests that an electron that attaches to the AT base pair would predominately attach to the thymine instead of adenine. The higher IP would suggest that an electron that is removed from the AT base pair would be predominately removed from the adenine within the base pair. Understanding how tautomerization, ionization and methylation differences change effects, discourages, or promotes one another is lacking. In this work, we begin the steps of integrating these effects with one another, to gain a greater understanding of molecular changes in DNA bases.

Keywords

Electron affinity and ionization potential Methylation Pre-translational and post-translational effects Tautomerization 

Notes

Acknowledgments

I would like to acknowledge Dr. Kari Copeland for her expertise. This work is supported in part by United States Department of Education Title III Graduate Education Program at Jackson State University, Grant No. P031B090210-12, the National Science Foundation, Experimental Program to Stimulate Competitive Research (EPSCoR), Experimental Program to Stimulate (EPS) 0903787 and EPS 1006883, and Mississippi Center for Supercomputing Research (computer time).

References

  1. 1.
    Fronza G, Gold B (2004) J Cell Biochem 91:250–257CrossRefGoogle Scholar
  2. 2.
    Hutchinson F (1985) Prog Nucleic Acid Res Mol Biol 32:115–154CrossRefGoogle Scholar
  3. 3.
    Willerslev E, Cooper A (2005) Proc R Soc 272:3–16CrossRefGoogle Scholar
  4. 4.
    Szyf M (2005) Biochemistry 70:651–669Google Scholar
  5. 5.
    Szyf M (2009) Ann Rev Pharm Tox 49:243–263CrossRefGoogle Scholar
  6. 6.
    Garner E, Costanzo V (2009) DNA Repair 8:1025–1037CrossRefGoogle Scholar
  7. 7.
    Ma DL, Chan DSH, Lee P, Kwan MHT, Leung CH (2011) Biochimie 93:1252–1266CrossRefGoogle Scholar
  8. 8.
    Oliveira HR, Civáň P, Morales J, Rodríguez-Rodríguez A, Lister DL, Jones MK (2012) J Archae Sci 39:828–835CrossRefGoogle Scholar
  9. 9.
    Pluhařová E, Jungwirth P, Bradforth ES, Slavíčk P (2011) J Phys Chem B 115:1294–1305CrossRefGoogle Scholar
  10. 10.
    Szyf M (1996) Pharmacol Ther 70:1–37CrossRefGoogle Scholar
  11. 11.
    Settles S, Wang R-W, Fronza G, Gold B (2010) J Nucleic Acids doi: 10.4061/2010/426505
  12. 12.
    Yu S-W, Chen G, Xie X-G, Lin X-F, Yang S-Y (2012) Chinese J Struct Chem 31:292–298Google Scholar
  13. 13.
    Gu J, Leszczynski J (1999) J Phys Chem A 103:2744–2750CrossRefGoogle Scholar
  14. 14.
    Forde GK, Forde AE, Hill G, Ford A, Nazario A, Leszczynski J (2006) J Phys Chem B 110:15564–15571CrossRefGoogle Scholar
  15. 15.
    Freitas AA, Pedro de Magalhães J (2011) Mutat Res 728:12–22CrossRefGoogle Scholar
  16. 16.
    Harris VH, Smith CL, Cummins WJ, Hamilton AL, Adams H, Dickman M, Hornby DP, Williams DM (2003) J Mol Biol 326:1389–1401CrossRefGoogle Scholar
  17. 17.
    Gorb L, Podolyan Y, Leszczynski J, Siebrand W, Fernández-Ramos A, Smedarchina Z (2002) Biopolymers 61:77–83CrossRefGoogle Scholar
  18. 18.
    Zhanpeisov NU, Sponer J, Leszczynski J (1998) J Phys Chem A 102:10374–10379CrossRefGoogle Scholar
  19. 19.
    Hall D, Holmlin ER, Barton KJ (1996) Nature 382:731–735CrossRefGoogle Scholar
  20. 20.
    Martin LM, Marples B, Coffey M, Lawler M, Lynch TH, Hollywood D, Marignol L (2010) Cancer Treat Rev 36:518–527CrossRefGoogle Scholar
  21. 21.
    Li X, Cai Z, Sevilla MD (2002) J Phys Chem A 106:1596–1603CrossRefGoogle Scholar
  22. 22.
    Frisch MJ et al. (2004) Gaussian 03, Revision C.02. Gaussian, Inc, WallingfordGoogle Scholar
  23. 23.
    Frisch MJ et al. (2009) Gaussian 09, revision A.1. Gaussian, Inc, WallingfordGoogle Scholar
  24. 24.
    Yu C, Peng S, Akiyama I, Li K, Lee KL, LeBreton RP (1980) J Am Chem Soc 102:4627–4631CrossRefGoogle Scholar
  25. 25.
    Close DM, Øhman KT (2008) J Phys Chem A 112:11207–11212CrossRefGoogle Scholar
  26. 26.
    Paukku Y, Hill G (2011) J Phys Chem A 115(18):4804–4810CrossRefGoogle Scholar
  27. 27.
    Cysewski P, Jeziorek D, Oliński R (1998) J Chem Soc Faraday Trans 94(13):1813–1821CrossRefGoogle Scholar
  28. 28.
    Solomons TWG, Fryhle C (2011) Organic Chemistry, 10th edn. Wiley, New YorkGoogle Scholar
  29. 29.
    Demeo DA, El-Sayed MA (1970) J Chem Phys 52:2622–2629CrossRefGoogle Scholar
  30. 30.
    Chandra AK, Tho Nguyen M, Uchimaru T, Zeegers-Huyskens T (1999) J Phys Chem A 103:8853–8860CrossRefGoogle Scholar
  31. 31.
    Cysewski P, Bira D, Bialkowski K (2004) J Mol Struct Theochem 678:77–81CrossRefGoogle Scholar
  32. 32.
    Cysewski P (2005) J Mol Struct Theochem 714(31):29–34Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Jackson State UniversityJacksonUSA
  2. 2.Mississippi CollegeClintonUSA

Personalised recommendations