Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 6, pp 2451–2458 | Cite as

Adsorption and decomposition mechanism of hexogen (RDX) on Al(111) surface by periodic DFT calculations

  • Cai-Chao Ye
  • Feng-Qi Zhao
  • Si-Yu Xu
  • Xue-Hai JuEmail author
Original Paper

Abstract

The adsorption of hexogen (RDX) molecule on the Al(111) surface was investigated by the generalized gradient approximation (GGA) of density functional theory (DFT). The calculations employ a supercell (4×4×3) slab model and three-dimensional periodic boundary conditions. The strong attractive forces between RDX molecule and aluminum atoms induce the N−O and N−N bond breaking of the RDX. Subsequently, the dissociated oxygen atoms, NO2 group and radical fragment of RDX oxidize the Al surface. The largest adsorption energy is −835.7 kJ mol–1. We also investigated the adsorption and decomposition mechanism of RDX molecule on the Al(111) surface. The activation energy for the dissociation steps of V4 configuration is as large as 353.1 kJ mol–1, while activation energies of other configurations are much smaller, in the range of 70.5–202.9 kJ mol–1. The N−O is even easier than the N−NO2 bond to decompose on the Al(111) surface.

Keywords

Adsorption and dissociation Al(111) surface Density functional theory Hexogen (RDX) 

Notes

Acknowledgments

We gratefully acknowledge the funding provided by the Laboratory of Science and Technology on Combustion and Explosion (Grant No. 9140C3501021101) for supporting this work. Cai-Chao Ye thanks the Innovation Foundation from the Graduate School of Nanjing University of Science and Technology for partial financial support.

Supplementary material

894_2013_1796_MOESM1_ESM.doc (61 kb)
ESM 1 (DOC 61 kb)

References

  1. 1.
    Sutton GP (1992) Rocket propulsion elements. Wiley, New YorkGoogle Scholar
  2. 2.
    Wang RH, Guo Y, Sa R, Shreeve JM (2010) Chem Eur J 16:8522–8529CrossRefGoogle Scholar
  3. 3.
    Singh RP, Shreeve JM (2011) Chem Eur J 17:11876–11881CrossRefGoogle Scholar
  4. 4.
    Chakraborty D, Muller RP, Dasgupta S, Goddard WA (2000) J Phys Chem A 104:2261–2272CrossRefGoogle Scholar
  5. 5.
    Boyd S, Murray JS, Politzer P (2009) J Chem Phys 131:204903CrossRefGoogle Scholar
  6. 6.
    Umezawa N, Kalia RK, Nakano A, Vashista P, Shimojo F (2007) J Chem Phys 126:234702CrossRefGoogle Scholar
  7. 7.
    Millar DIA, Oswald IDH, Francis DJ, Marshall WG, Pulham CR, Cumming AS (2009) Chem Commun:562–564Google Scholar
  8. 8.
    Hakey P, Ouellette W, Zubieta J, Korter T (2008) Acta Crystallogr Sect E 64:o1428CrossRefGoogle Scholar
  9. 9.
    Ciezak JA, Jenkins TA (2008) Propell Explos Pyrot 33:390–395CrossRefGoogle Scholar
  10. 10.
    Zhang JG, Wang K, Niu XQ, Zhang SW, Feng XJ, Zhang TL, Zhou ZN (2012) J Mol Model 18:3915–3926CrossRefGoogle Scholar
  11. 11.
    Scott AM, Petrova T, Odbadrakh K, Nicholson DM, Fuentes-Cabrera M, Lewis JP, Hill FC, Leszczynski J (2012) J Mol Model 18:3363–3378CrossRefGoogle Scholar
  12. 12.
    Guadarrama-Perez C, de La Hoz JMM, Balbuena PB (2010) J Phys Chem A 114:2284–2292CrossRefGoogle Scholar
  13. 13.
    Price EW (1984) Fundamentals of solid-propellant combustion. Progress in astronautics and aeronautics. American Institute of Aeronautics and Astronautics, New YorkGoogle Scholar
  14. 14.
    Zhu J, Li SF (1999) Propell Explos Pyrot 24:224–226CrossRefGoogle Scholar
  15. 15.
    Zhou SQ, Zhao FQ, Ju XH, Cheng XC, Yi JH (2010) J Phys Chem C 114:9390–9397CrossRefGoogle Scholar
  16. 16.
    Thompson DL, Sorescu DC, Boatz JA (2005) J Phys Chem B 109:1451–1463CrossRefGoogle Scholar
  17. 17.
    Sorescu DC, Boatz JA, Thompson DL (2003) J Phys Chem B 107:8953–8964CrossRefGoogle Scholar
  18. 18.
    Sorescu DC, Boatz JA, Thompson DL (2004) Proceedings Users Group Conference, pp 2–6Google Scholar
  19. 19.
    Ye CC, Ju XH, Zhao FQ, Xu SY (2012) Chin J Chem 30:2539–2548CrossRefGoogle Scholar
  20. 20.
    Johnson O (1973) J Catal 28:503–505CrossRefGoogle Scholar
  21. 21.
    Hoffmann R (1988) Solids and surfaces: A chemist’s view of bonding in the extended structures. VCH, New YorkGoogle Scholar
  22. 22.
    Chatterjee A, Niwa S, Mizukami F (2005) J Mol Graph 23:447–456CrossRefGoogle Scholar
  23. 23.
    Tian K, Tu XY, Dai SS (2007) Surf Sci 601:3186–3195CrossRefGoogle Scholar
  24. 24.
    Alfonso DR (2008) Surf Sci 602:2758–2768CrossRefGoogle Scholar
  25. 25.
    Alfonso DR, Cugini AV, Sorescu DC (2005) Catal Today 99:315–322CrossRefGoogle Scholar
  26. 26.
    Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys Condens Mat 14:2717–2744CrossRefGoogle Scholar
  27. 27.
    Perdew JP, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  29. 29.
    Kresse G (1996) Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  30. 30.
    Fischer TH, Almlof J (1992) J Phys Chem 96:9768–9774CrossRefGoogle Scholar
  31. 31.
    King HW (2000) CRC handbook of chemistry and physics, 81st edn. CRC, Boca RatonGoogle Scholar
  32. 32.
    Halgren TA, Lipscomb WN (1977) Chem Phys Lett 49:225–232CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cai-Chao Ye
    • 1
  • Feng-Qi Zhao
    • 2
  • Si-Yu Xu
    • 2
  • Xue-Hai Ju
    • 1
    Email author
  1. 1.Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  2. 2.Science and Technology on Combustion and Explosion LaboratoryXi’an Modern Chemistry Research InstituteXi’anPeople’s Republic of China

Personalised recommendations