Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 10, pp 4173–4180 | Cite as

Conformation-dependent conductance through a molecular break junction

  • Bartłomiej M. SzyjaEmail author
  • Huu Chuong Nguyen
  • Daniel Kosov
  • Nikos L. Doltsinis
Original Paper

Abstract

Ab initio molecular dynamics simulations have been performed of a gold—1,4-benzenedithiol (BDT)—gold nanojunction under mechanical stress. For three different pulling rates between 10 and 40 m s-1, it is found that the nanowire always ruptures between the second and third Au atom from the thiol sulfur. Larger rupture forces and longer extensions are required at higher pulling rates and vice versa. The electrical conductance was calculated along a pulling trajectory using the DFT-NEGF method to study the effect of thermal and stress-induced structural changes on the electrical transport properties. While the mechanically induced stretching of the junction is seen to lower the time-averaged conductance, thermal conformational changes are capable of altering the conductance by one order of magnitude. No single geometric quantity could be identified as the main contributor to the conductance fluctuations. Small modulations, however, can be explained in terms of C=C double bond vibrations in the BDT molecule. The dependence of the conductance on different geometric variables has further been investigated systematically by performing constrained geometry optimizations along a number of angle and dihedral coordinates. The largest changes in the conductance are observed when the Au-S-C angle and the Au-S-C-C dihedral are simultaneously constrained.

Online Abstract Figure

Conductance changes upon mechanical stretching of Au/BDT system

Keywords

Benzenedithiol Conductance External force Gold Nano-wire Density functional theory Non-equilibrium Green’s function 

References

  1. 1.
    Hakkinen H (2012) Nature Chem 4(6):443. doi: 10.1038/nchem.1352 CrossRefGoogle Scholar
  2. 2.
    Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278(5336):252. doi: 10.1126/science.278.5336.252 CrossRefGoogle Scholar
  3. 3.
    Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruna HD, Mceuen PL, Ralph DC (2002) Nature 417(6890):722. doi: 10.1038/nature00791 CrossRefGoogle Scholar
  4. 4.
    Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, Löhneysen (2002) Phys Rev Lett 88(17):176804. doi: 10.1103/PhysRevLett.88.176804 CrossRefGoogle Scholar
  5. 5.
    Liang W, Shores MP, Bockrath M, Long JR, Park H (2002) Nature 417(6890):725. doi: 10.1038/nature00790 CrossRefGoogle Scholar
  6. 6.
    Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2001) Science 294(5542):571. doi: 10.1126/science.1064354 CrossRefGoogle Scholar
  7. 7.
    Kushmerick JG, Holt DB, Yang JC, Naciri J, Moore MH, Shashidhar R (2002) Phys Rev Lett 89(8):086802+. doi: 10.1103/PhysRevLett.89.086802 CrossRefGoogle Scholar
  8. 8.
    Xu B, Tao NJ (2003) Science 301(5637):1221. doi: 10.1126/science.1087481 CrossRefGoogle Scholar
  9. 9.
    Smit RHM, Noat Y, Untiedt C, Lang ND, van Hemert MC, van Ruitenbeek JM (2002) Nature 419(6910):906. doi: 10.1038/nature01103 CrossRefGoogle Scholar
  10. 10.
    Dorogi M, Gomez J, Osifchin R, Andres RP, Reifenberger R (1995) Phys Rev B 52:9071. doi: 10.1103/PhysRevB.52.9071 CrossRefGoogle Scholar
  11. 11.
    Andres RP, Bein T, Dorogi M, Feng S, Henderson JI, Kubiak CP, Mahoney W, Osifchin RG, Reifenberger R (1996) Science 272(5266):1323. doi: 10.1126/science.272.5266.1323 CrossRefGoogle Scholar
  12. 12.
    Xiao X, Tao NJ (2004) Nano Lett 4(2):267. doi: 10.1021/nl035000m CrossRefGoogle Scholar
  13. 13.
    Tomfohr JK, Sankey OF (2002) Phys Stat Sol b 233(1):59. doi: 10.1002/1521-3951(200209) CrossRefGoogle Scholar
  14. 14.
    Tomfohr J, Sankey OF (2004) J Chem Phys 120(3):1542. doi: 10.1063/1.1625911 CrossRefGoogle Scholar
  15. 15.
    Krüger D, Fuchs H, Rousseau R, Marx D, Parrinello M (2002) Phys Rev Lett 89(18):186402CrossRefGoogle Scholar
  16. 16.
    Krüger D, Rousseau R, Fuchs H, Marx D (2003) Angew Chem Int Ed 42:2251CrossRefGoogle Scholar
  17. 17.
    Reddy P, Jang SY, Segalman RA, Majumdar A (2007) Science 315(5818):1568. doi: 10.1126/science.1137149 CrossRefGoogle Scholar
  18. 18.
    Borges Pontes R, Rocha AR, Sanvito S, Fazzio A, da Silva AJR (2011) ACS Nano 2:795CrossRefGoogle Scholar
  19. 19.
    Strange M, Rostgaard C, Häkkinen H, Thygesen KS (2011) Phys Rev B 83:115108CrossRefGoogle Scholar
  20. 20.
    Strange M, Thygesen KS (2011) Beilstein J Nanotechnol 2:746CrossRefGoogle Scholar
  21. 21.
    Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Daniel NO (2002) J Phys Cond Matt 14(11):2745. doi: 10.1088/0953-8984/14/11/302 CrossRefGoogle Scholar
  22. 22.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865. doi: 10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  23. 23.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78(7):1396. doi: 10.1103/PhysRevLett.78 CrossRefGoogle Scholar
  24. 24.
    Nosé S (1984) J Chem Phys 81(1):511. doi: 10.1063/1.447334 CrossRefGoogle Scholar
  25. 25.
    Huang F, Chen PA, Bennett T (2007) J Am Chem Soc 129(43):13225. doi: 10.1021/ja074456t CrossRefGoogle Scholar
  26. 26.
    Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K (2002) Phys Rev B 65:165401. doi: 10.1103/PhysRevB.65.165401 CrossRefGoogle Scholar
  27. 27.
    Xue Y, Datta S, Ratner MA (2002) Chem Phys 151(2–3). doi: 10.1016/S0301-0104(02)00446-9
  28. 28.
    Fisher DS, Lee PA (1981) Phys Rev B 23:6851. doi: 10.1103/PhysRevB.23.6851 CrossRefGoogle Scholar
  29. 29.
    Büttiker M, Imry Y, Landauer R, Pinhas S (1985) Phys Rev B 31:6207. doi: 10.1103/PhysRevB.31.6207 CrossRefGoogle Scholar
  30. 30.
    Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE (1999) Science 283:1727CrossRefGoogle Scholar
  31. 31.
    Xu BQ, Xiao YX, Tao JN (2003) J Am Chem Soc 125:16164CrossRefGoogle Scholar
  32. 32.
    Pu Q, Leng Y, Zhao X, Cummings PT (2010) J Phys Chem C 114(23):10365. doi: 10.1021/jp101689u CrossRefGoogle Scholar
  33. 33.
    Frei M, Aradhya SV, Koentopp M, Hybertsen MS, Venkataraman L (2011) Nano Lett 11(4):1518. doi: 10.1021/nl1042903 CrossRefGoogle Scholar
  34. 34.
    Andrews DQ, Van Duyne RP, Ratner MA (2008) Nano Lett 8:1120CrossRefGoogle Scholar
  35. 35.
    Chen W, Widawsky JR, Vásquez H, Schneebeli ST, Hybertsen MS, Breslow R, Venkataraman L (2011) J Am Chem Soc 133:17160CrossRefGoogle Scholar
  36. 36.
    Diez-Perez I, Hihath J, Hines T, Wang ZS, Zhou G, Müllen K, Tao N (2011) Nature Nanotech 6(4):226. doi: 10.1038/nnano.2011.20 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bartłomiej M. Szyja
    • 1
    Email author
  • Huu Chuong Nguyen
    • 1
  • Daniel Kosov
    • 2
  • Nikos L. Doltsinis
    • 1
  1. 1.Institute for Solid State Theory, Department of PhysicsUniversity of MünsterMünsterGermany
  2. 2.School of Engineering and Physical ScienceJames Cook UniversityTownsvilleAustralia

Personalised recommendations