Journal of Molecular Modeling

, Volume 19, Issue 7, pp 2893–2900 | Cite as

Is hyper-hardness more chemically relevant than expected?

  • Christophe MorellEmail author
  • André Grand
  • Alejandro Toro-Labbé
  • Henry Chermette
Original Paper


In this work, the third derivative of the energy with respect to the number of electrons, the so-called hyper-hardness, is investigated to assess whether this quantity has a chemical meaning. To achieve this goal a new working expression for hyper-hardness is developed and analyzed. It transpired from this analysis that hyper-hardness, just like hardness, can measure the reactivity or the stability of electron systems. Interestingly, positive values of hyper-hardness point to quite stable species such as noble gases and molecules. On the other hand, radicals almost always display large negative values of hyper-hardness.


Conceptual DFT Dual descriptor Hardness derivatives Principle of maximum hardness 



All the authors thank the joint program between “Evaluation-orientation de la Coopération Scientifique” and “Comisión Nacional de Investigación Científica y Tecnológica” (ECOS-CONICYT (through action project n°C11E03. C.M. and A.G. thank “le Commissariat à l’Energie Atomtique” (CEA-Grenoble) and “Grand Equipement National de Calcul Intensif” (GENCI) through projects gen6836 and gen6834 for computational support. A.T.L. acknowledges support from “Fondo Nacional de Desarrollo Científico y Tecnológico” (FONDECYT) through project n° 1090460. H.C gratefully acknowledges the “Grand Equipement National de Calcul Intensif./Centre Informatique National de l’Enseignemenet Supérieur” (GENCI/CINES) for HPC resources/computer time (Project cpt2130). Finally the authors specially thank the reviewer for pointing out the discrepancy in electronegativity values.


  1. 1.
    Pauling L (1932) J Am Chem Soc 54:3570–3582CrossRefGoogle Scholar
  2. 2.
    Jensen MQ (1996) J Chem Educ 73:11CrossRefGoogle Scholar
  3. 3.
    Iczkowski RP, Margrave JL (1961) J Am Chem Soc 83:3547–3551CrossRefGoogle Scholar
  4. 4.
    Parr RG, Donelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807CrossRefGoogle Scholar
  5. 5.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873CrossRefGoogle Scholar
  6. 6.
    Chermette H (1999) J Comput Chem 20:129–154CrossRefGoogle Scholar
  7. 7.
    Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  8. 8.
    Pearson RG (1968) J Chem Educ 45:981–984Google Scholar
  9. 9.
    Pearson RG (1997) Chemical Hardness. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  10. 10.
    Chattaraj PK, Lee H, Parr RG (1991) J Am Chem Soc 113:1855–1856CrossRefGoogle Scholar
  11. 11.
    Ayers PW, Parr RG, Pearson RG (2006) J Chem Phys 124:194107CrossRefGoogle Scholar
  12. 12.
    Chattaraj PK, Ayers PW, Melin J (2007) Phys Chem Chem Phys 9:3853–3856CrossRefGoogle Scholar
  13. 13.
    Pearson RG (1968) J Chem Educ 45:581–586CrossRefGoogle Scholar
  14. 14.
    Huheey JE (1965) J Phys Chem 69:3284–3291CrossRefGoogle Scholar
  15. 15.
    Huheey JE, Watts JC (1971) Inorg Chem 10:1553–1554CrossRefGoogle Scholar
  16. 16.
    Politzer PJ (1987) Chem Phys 86:1072–1073Google Scholar
  17. 17.
    Politzer P, Huheey JE, Murray JS, Grodzicki MJ (1992) Mol Struct 259:99–120CrossRefGoogle Scholar
  18. 18.
    Huheey JE (1971) J Org Chem 36:204–205CrossRefGoogle Scholar
  19. 19.
    Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205–212CrossRefGoogle Scholar
  20. 20.
    Morell C, Grand A, Toro-Labbé A (2006) Chem Phys Lett 425:342–346CrossRefGoogle Scholar
  21. 21.
    Fuentealba P, Cedillo M (1999) J Chem Phys 110:9807–9811CrossRefGoogle Scholar
  22. 22.
    Geerlings P, De Proft F (2008) Phys Chem Chem Phys 10:3028–3042CrossRefGoogle Scholar
  23. 23.
    Chattaraj PK, Cedillo A, Parr RG (1995) J Chem Phys 103:7645–7646CrossRefGoogle Scholar
  24. 24.
    Parr RG, Fuentealba P (1991) J Chem Phys 94:5559–5564CrossRefGoogle Scholar
  25. 25.
    Senet P (1996) J Chem Phys 105:6471–6489CrossRefGoogle Scholar
  26. 26.
    Senet P (1997) J Chem Phys 107:2516–2524CrossRefGoogle Scholar
  27. 27.
    Dunlap BI (2008) J Chem Phys 129:244109CrossRefGoogle Scholar
  28. 28.
    Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050CrossRefGoogle Scholar
  29. 29.
    Morell C, Ayers PW, Grand A, Chermette H (2011) Phys Chem Chem Phys 13:9601–9608CrossRefGoogle Scholar
  30. 30.
    De Proft F, Geerlings P, Liu S, Parr RG (1999) Polish J Chem 72:1737–1746Google Scholar
  31. 31.
    Berkowitz M, Parr RG (1988) J Chem Phys 88:2554–2557CrossRefGoogle Scholar
  32. 32.
    Gutierrez-Oliva S, Jaque P, Toro-Labbé A (2000) J Phys Chem A 104:8955–8964CrossRefGoogle Scholar
  33. 33.
    See for instance CRC Handbook of Chemistry and Physics, CRC PressGoogle Scholar
  34. 34.
    Giese B, He J, Mehl W (1988) Chem Ber 121:2063–2066CrossRefGoogle Scholar
  35. 35.
    Heberger K, Lopata A (1998) J Org Chem 63:8646–8653CrossRefGoogle Scholar
  36. 36.
    Wu JQ, Beranek I, Fisher H (1995) Helv Chim Acta 78:194–214CrossRefGoogle Scholar
  37. 37.
    De Vleeschouwer F, Van Speybroeck V, Waroquier M, Geerlings P, De Proft F (2007) Org Lett 9:2721–2724CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christophe Morell
    • 1
    • 3
    Email author
  • André Grand
    • 1
  • Alejandro Toro-Labbé
    • 2
  • Henry Chermette
    • 3
  1. 1.CEA Grenoble -INAC/SCIB/LAN (UMR-E n°3 CEA-UJF)), CEA-GrenobleGrenoble Cedex 9France
  2. 2.Laboratorio de Quimica Teorica Computacional (QTC), Facultad de Quimica, PontificaUniversidad Catôlica de ChileSantiagoChile
  3. 3.Université de Lyon; Université Lyon 1(UCBL) et UMR CNRS 5280 Sciences AnalytiquesVilleurbanne CedexFrance

Personalised recommendations