Journal of Molecular Modeling

, Volume 19, Issue 7, pp 2879–2883 | Cite as

Competition between halogen, dihalogen and hydrogen bonds in bromo- and iodomethanol dimers

  • Kevin E. RileyEmail author
  • Jan Řezáč
  • Pavel Hobza
Original Paper


O-H…X and O-H…O H-bonds as well as C-X…X dihalogen and C-X…O halogen bonds have been investigated in halomethanol dimers (bromomethanol dimer, iodomethanol dimer, difluorobromomethanol…bromomethanol complex and difluoroiodomethanol…iodomethanol complex). Structures of all complexes were optimized at the counterpoise-corrected MP2/cc-pVTZ level and single-point energies were calculated at the CCSD(T)/aug-cc-pVTZ level. Energy decomposition for the bromomethanol dimer complex was performed using the DFT-SAPT method based on the aug-cc-pVTZ basis set. OH…O and OH…X H-bonds are systematically the strongest in all complexes investigated, with the former being the strongest bond. Halogen and dihalogen bonds, being of comparable strength, are weaker than both H-bonds but are still significant. The strongest bonds were found in the difluoroiodomethanol…iodomethanol complex, where the O-H…O H-bond exceeds 7 kcal mol-1, and the halogen and dihalogen bonds exceed 2.5 and 2.3 kcal mol-1, respectively. Electrostatic energy is dominant for H-bonded structures, in halogen bonded structures electrostatic and dispersion energies are comparable, and, finally, for dihalogen structures the dispersion energy is clearly dominant.


Competition of hydrogen, halogen, and dihalogen bonding in the bromomethanol dimer are investigated


Dihalogen bond Halogen bond Hydrogen bond Noncovalent interactions 



This work was part of the Research Project RVO: 61388963 of the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic. The support of Praemium Academiae, Academy of Sciences of the Czech Republic, awarded to P.H. in 2007 is also acknowledged. This work was also supported by the Czech Science Foundation [P208/12/G016] and the operational program Research and Development for Innovations of European Social Fund (CZ 1.05/2.1.00/03/0058).

Supplementary material

894_2012_1727_MOESM1_ESM.doc (2.3 mb)
ESM 1 (DOC 2328 kb)


  1. 1.
    Metrangolo, P, Resnati G (eds.) (2008) Halogen bonding with dihalogens and interhalogens, in halogen bonding. In: Fundamentals and applications. Springer, Berlin, p 126Google Scholar
  2. 2.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JSJ (2007) Mol Model 13:305–311CrossRefGoogle Scholar
  3. 3.
    Brinck T, Murray JS, Politzer P (1992) Int J Quant Chem Quant Biol Symp 19:57–64CrossRefGoogle Scholar
  4. 4.
    Politzer P, Murray JS, Concha MCJ (2007) Mol Model 13:643–650CrossRefGoogle Scholar
  5. 5.
    Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci U S A 101:16789–16794CrossRefGoogle Scholar
  6. 6.
    Awwadi F, Willett RD, Twamley B (2011) Cryst Growth Des 11:5316–5323CrossRefGoogle Scholar
  7. 7.
    Politzer P, Murray JS, Concha MCJ (2008) Mol Model 14:659–665CrossRefGoogle Scholar
  8. 8.
    Rezac J, Riley KE, Hobza PJ (2011) Chem Theory Comput 7:2427–2438CrossRefGoogle Scholar
  9. 9.
    Riley KE, Murray JS, Politzer P, Concha MC, Hobza PJ (2009) Chem Theory Comput 5:155–163CrossRefGoogle Scholar
  10. 10.
    Riley KE (2009) Int J Quant Chem 110:1833–1841Google Scholar
  11. 11.
    Riley KE, Pitonak M, Jurecka P, Hobza P (2010) Chem Rev 110:5023–5063CrossRefGoogle Scholar
  12. 12.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887–1930CrossRefGoogle Scholar
  13. 13.
    Jansen G, Hesselmann AJ (2001) Phys Chem A 105:11156–11157CrossRefGoogle Scholar
  14. 14.
    Dabkowska I, Jurecka P, Hobza PJ (2005) Chem Phys 122:204322Google Scholar
  15. 15.
    Řezáč J, Hobza PJ (2011) Chem Theory Comput 7:685–689CrossRefGoogle Scholar
  16. 16.
    Bader RFW, Carroll MT, Cheeseman JR, Chang CJ (1987) Am Chem Soc 109:7968–7979CrossRefGoogle Scholar
  17. 17.
    Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer PJ (2010) Mol Model 16:1679–1691CrossRefGoogle Scholar
  18. 18.
    Werner HJ, Knowles PJ, Lindh R, Manby FR, Sch€utz M, Celani P, Korona T, Rauhut G, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer, G, Lloyd AW, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pitzer P, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T (2008) MOLPRO, version 2010.1Google Scholar
  19. 19.
    Riley KE, Murray JS, Fanfrlik J, Rezac J, Sola RJ, Concha MC, Ramos FM, Politzer PJ (2012) Mol Model doi: 10.1007/s00894-012-1428-x

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of ChemistryXavier University of LouisianaNew OrleansUSA
  2. 2.Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech RepublicPragueCzech Republic
  3. 3.Regional Center of Advanced Technologies and Materials, Department of Physical ChemistryPalacky UniversityOlomoucCzech Republic

Personalised recommendations