Journal of Molecular Modeling

, Volume 19, Issue 4, pp 1651–1666 | Cite as

Targeted molecular dynamics (TMD) of the full-length KcsA potassium channel: on the role of the cytoplasmic domain in the opening process

  • Yan Li
  • Florent Barbault
  • Michel Delamar
  • Ruisheng Zhang
  • Rongjing Hu
Original Paper


Some recent papers clearly indicate that the cytoplasmic domain of KcsA plays a role in pH sensing. We have performed, for the first time, a targeted molecular dynamics (TMD) simulation of the opening of full-length KcsA at pH 4 and pH 7, with a special interest for the cytoplasmic domain. Association energy calculations show a stabilization at pH 7 confirming that the protonation of some amino-acids at pH 4 in this domain plays a role in the opening process. A careful analysis of the pH dependent charges borne by residues in the cytoplasmic domain and their interactions confirms some literature experimental data and permits to give further insight into the role played by some of them in the opening process.


Cytoplasmic domain Full-length KcsA pH sensor Targeted molecular dynamics (TMD) 



The China Scholarship Council is gratefully acknowledged for granting a PhD scholarship to Yan LI.

Supplementary material

894_2012_1726_MOESM1_ESM.doc (419 kb)
ESM 1 (DOC 419 kb)


  1. 1.
    Hille B (2003) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland, MAGoogle Scholar
  2. 2.
    Alagem N, Yesylevskyy S, Reuveny E (2003) The pore helix is involved in stabilizing the open state of inwardly rectifying K + channels. Biophys J 85:300–312CrossRefGoogle Scholar
  3. 3.
    Krol E, Trebacz K (2000) Ways of ion channel gating in plant cells. Ann Bot 86:449–469CrossRefGoogle Scholar
  4. 4.
    Cuello LG, Cortes DM, Jogini V, Sompornpisut A, Perozo E (2010) A molecular mechanism for proton-dependent gating in KCSA. FEBS Lett 584:1126–1132CrossRefGoogle Scholar
  5. 5.
    Salkoff L, Wei AD, Baban B, Butler A, Fawcett G, Ferreira G, Santi CM (2005) The C. elegans research community, WormBook, doi: 10.1895/wormbook.1.42.1
  6. 6.
    Uysal S, Vasquez V, Terechko V, Esaki K, Koide S, Fellouse FA, Sidhu SS, Perozo E, Kossiakoff A (2009) The crystal structure of full-length KcsA in its closed conformation. Proc Natl Acad Sci USA 106:6644–6649CrossRefGoogle Scholar
  7. 7.
    Cuello LG, Romero JG, Cortes DM, Perozo E (1998) pH-dependent gating in the Streptomyces lividans K channel. Biochemistry 37:3229–3236CrossRefGoogle Scholar
  8. 8.
    Heginbotham L, LeMasurier M, Kolmakova-Partensky L, Miller C (1999) Single streptomyces lividans K + channels: functional asymmetries and sidedness of proton activation. J Gen Physiol 114:551–560CrossRefGoogle Scholar
  9. 9.
    Schrempf H, Schmidt O, Kümmerlen R, Hinnah S, Müller D, Betzler M, Steinkamp T, Wagner R (1995) A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J 14:5170–5178Google Scholar
  10. 10.
    Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K + conduction and selectivity. Science 280:69–77CrossRefGoogle Scholar
  11. 11.
    Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414:43–48CrossRefGoogle Scholar
  12. 12.
    Pau VP, Zhu Y, Yuchi Z, Hoang QQ, Yang DS (2007) Characterization of the C-terminal domain of a potassium channel from Streptomyces lividans (KcsA). J Biol Chem 282:29163–29169CrossRefGoogle Scholar
  13. 13.
    Cortes DM, Cuello LG, Perozo E (2001) Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J Gen Physiol 117:165–180CrossRefGoogle Scholar
  14. 14.
    Perozo E, Cortes DM, Cuello LG (1999) Structural rearrangements underlying K1-channel activation gating. Science 285:73–78CrossRefGoogle Scholar
  15. 15.
    Liu YS, Sompornpisut P, Perozo E (2001) Structure of the KcsA channel intracellular gate in the open state. Nat Struct Biol 8:883–887CrossRefGoogle Scholar
  16. 16.
    Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2002) The open pore conformation of potassium channels. Nature 417:523–526CrossRefGoogle Scholar
  17. 17.
    Thompson AN, Posson DJ, Parsa PV, Nimigean CM (2008) Molecular mechanism of pH sensing in KcsA potassium channels. Proc Natl Acad Sci USA 105:6900–6905CrossRefGoogle Scholar
  18. 18.
    Takeuchi K, Takahashi H, Kawano S, Shimada I (2007) Identification and characterization of the slowly exchanging pH-dependent conformational rearrangement in KcsA. J Biol Chem 282:15179–15186CrossRefGoogle Scholar
  19. 19.
    Shen Y, Kong Y, Ma J (2002) Intrinsic flexibility and gating mechanism of the potassium channel KcsA. Proc Natl Acad Sci USA 99:1949–1953CrossRefGoogle Scholar
  20. 20.
    Hirano M, Takeuchi Y, Aoki T, Yanagida T, Ide T (2010) Rearrangements in the KcsA cytoplasmic domain underlie its gating. J Biol Chem 285:3777–3783CrossRefGoogle Scholar
  21. 21.
    Uysal S, Cuello LG, Cortes DM, Koide S, Kossiakoff AA, Perozo E (2011) Mechanism of activation gating in the full-length KcsA K + channel. Proc Natl Acad Sci USA 108:11896–11899CrossRefGoogle Scholar
  22. 22.
    Zhong W, Guo W (2009) Mixed modes in opening of KcsA potassium channel from a targeted molecular dynamics simulation. Biochem Biophys Res Comm 388:86–90CrossRefGoogle Scholar
  23. 23.
    Compoint M, Picaud F, Ramseyer C, Girardet C (2005) Zip gating of the KcsA channel studied by targeted molecular dynamics. Chem Phys Lett 407:199–204CrossRefGoogle Scholar
  24. 24.
    Compoint M, Picaud F, Ramseyer C, Girardet C (2005) Targeted molecular dynamics of an open-state KcsA channel. J Chem Phys 122:134707–134714CrossRefGoogle Scholar
  25. 25.
    Zhong W, Guo W, Ma S (2008) Intrinsic aqueduct orifices facilitate K + channel gating. FEBS Lett 582:3320–3324CrossRefGoogle Scholar
  26. 26.
    Holyoake J, Domene C, Bright JN, Sansom MS (2004) KcsA closed and open: modelling and simulation studies. Eur Biophys J 33:238–246CrossRefGoogle Scholar
  27. 27.
    Cuello LG, Jogini V, Cortes DM, Perozo E (2010) Structural mechanism of C-type inactivation in K+ channels. Nature 466:203–208CrossRefGoogle Scholar
  28. 28.
    Compoint M, Carloni P, Ramseyer C, Girardet C (2004) Molecular dynamics study of the KcsA channel at 2.0 Å resolution: Stability and concerted motions within the pore. Biochim Biophys.Acta, 1661:26–39CrossRefGoogle Scholar
  29. 29.
    Morais-Cabral JH, Zhou Y, MacKinnon R (2001) Energetic optimization of ion conduction rate by the K + selectivity filter. Nature 414:37–42CrossRefGoogle Scholar
  30. 30.
    Raja M (2010) The role of extramembranous cytoplasmic termini in assembly and stability of the tetrameric K(+)-channel KcsA. J Membrane Biol 235:51–61CrossRefGoogle Scholar
  31. 31.
    Heginbotham L, Odessey E, Miller C (1997) Tetrameric stoichiometry of a prokaryotic K + channel. Biochemistry 36:10335–10342CrossRefGoogle Scholar
  32. 32.
    Meuser D, Splitt H, Wagner R, Schrempf H (1999) Exploring the open pore of the potassium channel from Streptomyces lividans. FEBS Lett 462:447–452CrossRefGoogle Scholar
  33. 33.
    Hirano M, Onishi Y, Yanagida T, Ide T (2011) Role of the KcsA channel cytoplasmic domain in pH-dependent gating. Biophys J 101:2157–2162CrossRefGoogle Scholar
  34. 34.
    Cuello LG, Jogini V, Cortes DM, Sompornpisut A, Purdy MD, Wiener MC, Perozo E (2010) Design and characterization of a constitutively open KcsA. FEBS Lett 584:1133–1138CrossRefGoogle Scholar
  35. 35.
    Cuello LG, Jogini V, Cortes DM, Pan AC, Gagnon DG, Dalmas O, Cordero-Morales JF, Chakrapani S, Roux B, Perozo E (2010) Structural basis for the coupling between activation and inactivation gates in K(+) channels. Nature 466:272–275CrossRefGoogle Scholar
  36. 36.
    Kharkyanen VN, Yesylevskyy SO, Berezetskaya NM, Boiteux C, Ramseyer C (2009) Semi-quantitative model of the gating of KcsA ion channel. 2. Dynamic self-organization model of the gating Biopolym. Cell 25:476–483Google Scholar
  37. 37.
    Andersen HC (1980) Molecular dynamics at constant pressure and/or temperature. J Chem Phys 72:2384–2393CrossRefGoogle Scholar
  38. 38.
    Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res 33:W368–W371CrossRefGoogle Scholar
  39. 39.
    Schlitter I, Engels M, Krüger P (1994) Targeted molecular dynamics: a new approach for searching pathways of conformational transition. J Mol Graphics 12:84–89CrossRefGoogle Scholar
  40. 40.
    Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci USA 102:6679–6685CrossRefGoogle Scholar
  41. 41.
    Case D, Darden T, Cheatham TE, Simmerling C, Wang J, Duke, Luo R, Crowley M, Walker R, Zhang W, Merz K, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvary I, Wong K, Paesani F, Vanicek J, Wu X, Brozell S, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Gui G, Mathews D, Seetin M, Sagui C, Babin V, Kollman P (2010) AMBER 11, University of California, San FranciscoGoogle Scholar
  42. 42.
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of N-alkanes. J Comput Phys 23:327–341CrossRefGoogle Scholar
  43. 43.
    Kottalam J, Case D (1990) Langevin modes of macromolecules: applications to crambin and DNA hexamers. Biopolymers 29:1409–1421CrossRefGoogle Scholar
  44. 44.
    Jörg W, Peter SS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20:217–230CrossRefGoogle Scholar
  45. 45.
    Roberts E, Eargle J, Wright D, Luthey-Schulten Z (2006) Multiseq: unifying sequence and structure data for evolutionary analysis. BMC Bioinforma 7:382–393CrossRefGoogle Scholar
  46. 46.
    Chen X, Poon BK, Dousis A, Wang Q, Ma J (2007) Normal-mode refinement of anisotropic thermal parameters for potassium channel KcsA at 3.2 Å crystallographic resolution. Structure 15:955–962CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yan Li
    • 1
    • 3
  • Florent Barbault
    • 3
  • Michel Delamar
    • 3
  • Ruisheng Zhang
    • 1
    • 2
  • Rongjing Hu
    • 2
  1. 1.Department of ChemistryLanzhou UniversityLanzhouPeople’s Republic of China
  2. 2.School of Information Science and EngineeringLanzhou UniversityLanzhouPeople’s Republic of China
  3. 3.Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR CNRS 7086ParisFrance

Personalised recommendations