Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 7, pp 2849–2853 | Cite as

On the exponential model for energy with respect to number of electrons

  • Patricio FuentealbaEmail author
  • Carlos Cárdenas
Original Paper

Abstract

Using an exponential model for the variation in energy with respect to the number of electrons it is shown that, within the model, the hardness, softness, electrophilicity and other global parameters connected to higher order derivatives follow an equalization principle after a molecule is formed from two separated species. Two generalizations of the model are also discussed, one of which presents discontinuity of the chemical potential at integer values of N.

Keywords

Energy of atoms Equalization rules Derivative discontinuity 

Notes

Acknowledgments

This work was supported by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) through grant 11090013, and also by the Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia. The authors also acknowledge Project ICM-P10-003-F, CILIS, granted by Fondo de Innovación para la Competitividad, del Ministerio de Economía, Fomento y Turismo, Chile.

References

  1. 1.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Chermette H (1998) Density functional theory: a powerful tool for theoretical studies in coordination chemistry. Coord Chem Rev 180:699–721CrossRefGoogle Scholar
  3. 3.
    Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quant Chem 101:520–534CrossRefGoogle Scholar
  4. 4.
    Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091CrossRefGoogle Scholar
  5. 5.
    Gazquez J (2008) Perspectives on density functional theory of chemical reactivity. J Mex Chem Soc 52(1):3–10Google Scholar
  6. 6.
    Liu S-B (2009) Conceptual density functional theory and some recent developments. Acta Phys Chim Sinica 25(03):590–600Google Scholar
  7. 7.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807CrossRefGoogle Scholar
  8. 8.
    Mulliken RS (1934) A new electroaffinity scale: together with data on states and an ionization potential and electron affinities. J Chem Phys 2:782–793CrossRefGoogle Scholar
  9. 9.
    Fuentealba P, Parr RG (1991) Higher-order derivatives in density-functional theory, especially the hardness derivative. J Chem Phys 94:5559–5564CrossRefGoogle Scholar
  10. 10.
    Liu SB, Parr RG (1997) Second-order density-functional description of molecules and chemical changes. J Chem Phys 106(13):5578–5586CrossRefGoogle Scholar
  11. 11.
    Fuentealba P, Chamorro E, Cardenas C (2007) Further exploration of the Fukui function, hardness, and other reactivity indices and its relationships within the Kohn-Sham scheme. Int J Quant Chem 107:37–45CrossRefGoogle Scholar
  12. 12.
    Geerlings P, De Proft F (2008) Conceptual DFT: the chemical relevance of higher response functions. Phys Chem Chem Phys 10(21):3028–3042CrossRefGoogle Scholar
  13. 13.
    Cardenas C, Echegaray E, Chakraborty D, Anderson JSM, Ayers PW (2009) Relationships between the third-order reactivity indicators in chemical density-functional theory. J Chem Phys 130(24):244105CrossRefGoogle Scholar
  14. 14.
    Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694CrossRefGoogle Scholar
  15. 15.
    Chan GKL (1999) A fresh look at ensembles: derivative discontinuities in density functional theory. J Chem Phys 110:4710–4723CrossRefGoogle Scholar
  16. 16.
    Yang WT, Zhang YK, Ayers PW (2000) Degenerate ground states and fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84:5172–5175CrossRefGoogle Scholar
  17. 17.
    Cohen MH, Wasserman A (2003) Revisiting N-continuous density-functional theory: chemical reactivity and “atoms” in “molecules”. Israel J Chem 43:219–227CrossRefGoogle Scholar
  18. 18.
    Cohen MH, Wasserman A (2007) On the foundations of chemical reactivity theory. J Phys Chem A 111:2229–2242CrossRefGoogle Scholar
  19. 19.
    Ayers PW (2008) The continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43(1):285–303CrossRefGoogle Scholar
  20. 20.
    Cohen AJ, Mori-Sanchez P, Yang WT (2008) Insights into current limitations of density functional theory. Science 321(5890):792–794CrossRefGoogle Scholar
  21. 21.
    Cohen AJ, Mori-Sanchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112(1):289–320CrossRefGoogle Scholar
  22. 22.
    Yang W, Cohen AJ, Mori-Sanchez P (2012) Derivative discontinuity, bandgap and lowest unoccupied molecular orbital in density functional theory. J Chem Phys 136(20):204111CrossRefGoogle Scholar
  23. 23.
    Ayers PW (2007) On the electronegativity nonlocality paradox. Theor Chem Acc 118:371–381CrossRefGoogle Scholar
  24. 24.
    Chattaraj PK, Giri S, Duley S (2010) Electrophilicity equalization principle. J Phys Chem Lett 1(7):1064–1067CrossRefGoogle Scholar
  25. 25.
    Parr RG, Bartolotti LJ (1982) On the geometric mean principle for electronegativity equalization. J Am Chem Soc 104:3801–3803CrossRefGoogle Scholar
  26. 26.
    Von Szentpály L (2000) Modeling the charge dependence of total energy and its relevance to electrophilicity. Int J Quant Chem 76(2):222–234CrossRefGoogle Scholar
  27. 27.
    Sanderson RT (1951) An interpretation of bond lengths and a classification of bonds. Science 114:670–672CrossRefGoogle Scholar
  28. 28.
    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar
  29. 29.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  30. 30.
    Ayers PW (2007) The physical basis of the hard/soft acid/base principle. Faraday Discuss 135:161–190CrossRefGoogle Scholar
  31. 31.
    Parr RG, Von Szentpaly L, Liu SB (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  32. 32.
    Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154CrossRefGoogle Scholar
  33. 33.
    Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873CrossRefGoogle Scholar
  34. 34.
    Nalewajski RF (1985) A study of electronegativity equalization. J Chem Phys 89:2831–2837CrossRefGoogle Scholar
  35. 35.
    Mortier WJ (1987) Electronegativity equalization and its applications. Struct Bond 66:125–143CrossRefGoogle Scholar
  36. 36.
    Itskowitz P, Berkowitz ML (1997) Chemical potential equalization principle: direct approach from density functional theory. J Phys Chem A 101:5687–5691CrossRefGoogle Scholar
  37. 37.
    Nalewajski RF (1998) On the chemical potential/electronegativity equalization in density functional theory. Pol J Chem 72(7, Suppl):1763–1778Google Scholar
  38. 38.
    Bultinck P, Carbo-Dorca R (2002) Algebraic relationships between conceptual DFT quantities and the electronegativity equalization hardness matrix. Chem Phys Lett 364:357–362CrossRefGoogle Scholar
  39. 39.
    Ayers PW, Parr RG (2008) Local hardness equalization: exploiting the ambiguity. J Chem Phys 128:184108CrossRefGoogle Scholar
  40. 40.
    Berkowitz M, Ghosh SK, Parr RG (1985) On the concept of local hardness in chemistry. J Am Chem Soc 107:6811–6814CrossRefGoogle Scholar
  41. 41.
    Baekelandt BG, Cedillo A, Parr RG (1995) Reactivity indexes and fluctuation formulas in density- functional theory - isomorphic ensembles and a new measure of local hardness. J Chem Phys 103:8548–8556CrossRefGoogle Scholar
  42. 42.
    Langenaeker W, Deproft F, Geerlings P (1995) Development of local hardness related reactivity indexes - their application in a study of the Se at monosubstituted benzenes within the hsab context. J Phys Chem 99:6424–6431CrossRefGoogle Scholar
  43. 43.
    Chattaraj PK, Roy DR, Geerlings P, Torrent-Sucarrat M (2007) Local hardness: a critical account. Theor Chem Acc 118:923–930CrossRefGoogle Scholar
  44. 44.
    Torrent-Sucarrat M, De Proft F, Ayers PW, Geerlings P (2010) On the applicability of local softness and hardness. Phys Chem Chem Phys 12(5):1072–1080CrossRefGoogle Scholar
  45. 45.
    Cardenas C, Tiznado W, Ayers PW, Fuentealba P (2011) The Fukui potential and the capacity of charge and the global hardness of atoms. J Phys Chem A 115(11):2325–2331CrossRefGoogle Scholar
  46. 46.
    Cuevas-Saavedra R, Rabi N, Ayers PW (2011) The unconstrained local hardness: an intriguing quantity, beset by problems. Phys Chem Chem Phys 13(43):19594CrossRefGoogle Scholar
  47. 47.
    Islam N, Ghosh DC (2012) On the electrophilic character of molecules through its relation with electronegativity and chemical hardness. Int J Mol Sci 13(2):2160–2175CrossRefGoogle Scholar
  48. 48.
    Cardenas C, Ayers P, De Proft F, Tozer D, Geerlings P (2011) Should negative electron affinities be used for evaluating the chemical hardness? Phys Chem Chem Phys 13(6):2285–2293CrossRefGoogle Scholar
  49. 49.
    von Szentpály L (2011) Ruling out any electrophilicity equalization principle. J Phys Chem A 115(30):8528–8531CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Departamento de Física, Facultad de CienciasUniversidad de Chile, and Centro para el Desarrollo de las Nanociencias y Nanotecnología, CEDENNASantiagoChile

Personalised recommendations