Journal of Molecular Modeling

, Volume 19, Issue 3, pp 1205–1209 | Cite as

Theoretical study on aluminum carbide endohedral fullerene-Al4C@C80

  • Qi Liang Lu
  • Wen Jun Song
  • Jun Wei Meng
  • Jian Guo Wan
Original Paper

Abstract

The possibility of a new endohedral fullerene with a trapped aluminum carbide cluster, Al4C @C80-I h , was theoretical investigated. The geometries and electronic properties of it were investigated using density functional theory methods. The Al4C unit formally transfers six electrons to the C80 cage which induces stabilization of Al4C@C80. A favorable binding energy, relatively large HOMO-LUMO gap, electron affinities and ionization potentials suggested the Al4C@C80 is rather stable. The analysis of vertical ionization potential and vertical electron affinity indicate Al4C@C80 is a good electron acceptor.

Figure

An endohedral fullerene with a trapped aluminum carbide cluster, Al4C @C80-I h , was investigated using density functional theory. A favorable binding energy, relatively large HOMO-LUMO gap, electron affinities and ionization potentials suggested it is rather stable

Keywords

Aluminum carbide cluster Density functional theory Endohedral fullerenes 

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of Anhui Province (No. 090414186), the Key Research Project of Natural Science Foundation of Anhui Provincial Universities (No. KJ2010A029) and the 211 Project of Anhui University.

Supplementary material

894_2012_1665_MOESM1_ESM.doc (153 kb)
ESM 1 (DOC 153 kb)

References

  1. 1.
    Chaur MN, Athans AJ, Echegoyen L (2008) Tetrahedron 64:11387–11393CrossRefGoogle Scholar
  2. 2.
    Heath JR, Obrien SC, Zhang Q, Liu Y, Curl RF, Kroto HW, Tittel FK, Smalley RE (1985) J Am Chem Soc 107:7779–7780CrossRefGoogle Scholar
  3. 3.
    Alvarez MM, Gillan EG, Holczer K, Kaner RB, Min KS, Whetten RL (1991) J Phys Chem 95:10561–10563CrossRefGoogle Scholar
  4. 4.
    Stevenson S, Fowler PW, Heine T, Duchamp JC, Rice G, Glass T, Harich K, Hajdu E, Bible R, Dorn HC (2000) Nature 408:427–428CrossRefGoogle Scholar
  5. 5.
    Wang CR, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H (2001) Angew Chem Int Ed 40:397–399CrossRefGoogle Scholar
  6. 6.
    Wang TS, Feng L, Wu JY, Xu W, Xiang JF, Tan K, Ma YH, Zheng JP, Jiang L, Lu X, Shu CY, Wang CR (2010) J Am Chem Soc 132:16362–16364CrossRefGoogle Scholar
  7. 7.
    Stevenson S, Mackey MA, Stuart MA, Phillips JP, Easterling ML, Chancellor CJ, Olmstead MM, Balch AL (2008) J Am Chem Soc 130:11844–11845CrossRefGoogle Scholar
  8. 8.
    Saunders M, Jimenezvazquez HA, Cross RJ, Poreda RJ (1993) Science 259:1428–1430CrossRefGoogle Scholar
  9. 9.
    Komatsu K, Murata M, Murata Y (2005) Science 307:238–240CrossRefGoogle Scholar
  10. 10.
    Ramachandran CN, Sathyamurthy N (2005) Chem Phys Lett 410:348–351CrossRefGoogle Scholar
  11. 11.
    Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC (1999) Nature 401:55–57CrossRefGoogle Scholar
  12. 12.
    Yamada M, Akasaka T, Nagase S (2010) Acc Chem Res 43:92–102CrossRefGoogle Scholar
  13. 13.
    Sun BY, Li MX, Luo HX, Shi ZJ, Gu ZN (2002) Electrochim Acta 47:3545–3549CrossRefGoogle Scholar
  14. 14.
    Lu X, Feng L, Akasaka T, Nagase S (2012) Chem Soc Rev doi: 10.1039/c2cs35214a
  15. 15.
    Beavers CM, Zuo T, Duuchamp JC, Harich K, Dorn HC, Olmsread MM, Balch AL (2006) J Am Chem Soc 128:11352–11353CrossRefGoogle Scholar
  16. 16.
    Yang S, Popov AA, Dunsch L (2007) Angew Chem Int Ed 46:1256–1259CrossRefGoogle Scholar
  17. 17.
    Lu X, Akasaka T, Nagase S (2011) Chem Commun 47:5942CrossRefGoogle Scholar
  18. 18.
    Yang S, Liu F, Chen C, Jiao M, Wei T (2011) Chem Commun 47:11822CrossRefGoogle Scholar
  19. 19.
    Manolopoulos DE, Folwer PW (1992) J Chem Phys 96:7603–7614CrossRefGoogle Scholar
  20. 20.
    Kobayashi K, Nagase S, Akasaka T (1995) Chem Phys Lett 245:230–236CrossRefGoogle Scholar
  21. 21.
    Chaur MN, Melin F, Ortiz AL, Echegoyen L (2009) Angew Chem Int Ed 48:7514–7538CrossRefGoogle Scholar
  22. 22.
    Dunsch L, Yang SF (2007) Small 3:1298–1320CrossRefGoogle Scholar
  23. 23.
    Stevenson S, Phillips JP, Reid J E, Olmstead MM, Rath SP, Balch AL (2004) Chem Commun 2814–2815Google Scholar
  24. 24.
    Yang SF, Dunsch L (2005) Chem Eur J 12:413–419CrossRefGoogle Scholar
  25. 25.
    Dunsch L, Krause M, Noack J, Georgi P (2004) J Phys Chem Solids 65:309–315CrossRefGoogle Scholar
  26. 26.
    Chen N, Zhang EY, Wang CR (2006) J Phys Chem B 110:13322–13325CrossRefGoogle Scholar
  27. 27.
    Chen N, Fan LZ, Tan K, Wu YQ, Shu CY, Xin L, Wang CR (2007) J Phys Chem C 111:11823–11828CrossRefGoogle Scholar
  28. 28.
    Stevenson S, Chancellor CJ, Lee HM, Olmstead MM, Balch AL (2008) Inorg Chem 47:1420–1427CrossRefGoogle Scholar
  29. 29.
    Yang SF, Chen CB, Popov AA, Zhang WF, Liu FP, Dunsch L (2009) Chem Commun 6391–6393Google Scholar
  30. 30.
    Iiduka Y, Wakahara T, Nakahodo T, Tsuchiya T, Sakuraba A, Maeda Y, Akasaka T, Yoza K, Horn E, Kato T, Liu MTH, Mizorogi N, Kobayashi K, Nagase S (2005) J Am Chem Soc 127:12500–12501CrossRefGoogle Scholar
  31. 31.
    Wang TS, Chen N, Xiang JF, Li B, Wu JY, Xu W, Jiang L, Tan K, Shu CY, Lu X, Wang CR (2009) J Am Chem Soc 131:16646–16647CrossRefGoogle Scholar
  32. 32.
    Kurihara H, Lu X, Iiduka Y, Mizorogi N, Slanina Z, Tsuchiya T, Akasaka T, Nagase S (2011) J Am Chem Soc 133:2382–2385CrossRefGoogle Scholar
  33. 33.
    Mercado BQ, Olmstead MM, Beavers CM, Easterling ML, Stevenson S, Mackey MA, Coumbe CE, Phillips JD, Phillips JP, Poblet JM, Balch AL (2010) Chem Commun 46:279–281CrossRefGoogle Scholar
  34. 34.
    Krause M, Ziegs F, Popov AA, Dunsch L (2007) Chemphyschem 8:537–540CrossRefGoogle Scholar
  35. 35.
    Delley B (1990) J Chem Phys 92:508–517CrossRefGoogle Scholar
  36. 36.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  37. 37.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  38. 38.
    Li X, Wang LS, Boldyrev AI, Simons J (1999) J Am Chem Soc 121:6033–6038CrossRefGoogle Scholar
  39. 39.
    Zubarev DY, Boldyre AI (2005) J Chem Phys 122:144322CrossRefGoogle Scholar
  40. 40.
    Shinohara H (2000) Rep Prog Phys 63:843–892CrossRefGoogle Scholar
  41. 41.
    Yang SF, Dunsch L (2008) “Endohedral fullerenes”, nanomaterials. In: Lukehart CM, Scott RA, (eds) Inorganic and bioinorganic perspectives. Wiley, Chichester Google Scholar
  42. 42.
    Ramos E, Monroy BM, Alonso JC, Sansores LE, Salcedo R, Martínez A (2012) J Phys Chem C 116:3988–3994CrossRefGoogle Scholar
  43. 43.
    Campanera JM, Bo C, Olmstead MM, Balch AL, Poblet JM (2002) J Phys Chem A 106:12356–12364CrossRefGoogle Scholar
  44. 44.
    Kim YH, Zhao YF, Williamson A, Heben MJ, Zhang SB (2006) Phys Rev Lett 96:016102CrossRefGoogle Scholar
  45. 45.
    Okamoto Y, Miyamoto Y (2001) J Phys Chem B 105:3470–3474CrossRefGoogle Scholar
  46. 46.
    Gao Y, Zeng XC (2007) J Phys Condens Matter 19:386220CrossRefGoogle Scholar
  47. 47.
    Ioffe IN, Boltalina OV, Sidorov LN, Dorn HC, Stevenson S, Rice G (2000) In: Kadish KM, Ruoff RS (eds) Fullerenes: Recent advances in the chemistry and physics of fullerenes and related materials. Electrochemical Society, Pennington, p 166Google Scholar
  48. 48.
    Langa F, Nierengarten JF (2007) Fullerenes: Principles and applications. Royal Society of Chemistry, OxfordGoogle Scholar
  49. 49.
    Guldi DM, Illescas BM, Atienza CM, Wielopolski M, Martín N (2009) Chem Soc Rev 38:1587–1597CrossRefGoogle Scholar
  50. 50.
    Bottari G, de la Torre G, Guldi DM, Torres T (2010) Chem Rev 110:6768–6816CrossRefGoogle Scholar
  51. 51.
    Quintiliani M, Kahnt A, Wöfle T, Hieringer W, Vázquez P, Görling A, Guldi DM, Torres T (2008) Chem Eur J 14:3765–3775CrossRefGoogle Scholar
  52. 52.
    Ross RB, Cardona CM, Guldi DM, Sankaranarayanan SG, Reese MO, Kopidakis N, Peet J, Walker B, Bazan GC, Keuren EV, Holloway BC, Drees M (2009) Nat Mater 8:208–212CrossRefGoogle Scholar
  53. 53.
    Ross RB, Cardona CM, Swain FB, Guldi DM, Sankaranarayanan SG, Keuren EV, Holloway BC, Drees M (2009) Adv Funct Mater 19:2332–2337CrossRefGoogle Scholar
  54. 54.
    Martínez A, Rodríguez-Gironés MA, Barbosa A, Costas M (2008) J Phys Chem A 112:9037–9042CrossRefGoogle Scholar
  55. 55.
    Martínez A, Galano A (2010) J Phys Chem C 114:8184–8191CrossRefGoogle Scholar
  56. 56.
    Gázquez JL, Cedillo A, Vela A (2007) J Phys Chem A 111:1966–1970CrossRefGoogle Scholar
  57. 57.
    Yang SF, Popov A, Kalbac M, Duusch L (2008) Chem Eur J 14:2084–2092CrossRefGoogle Scholar
  58. 58.
    Yang SF, Popov AA, Chen CH, Dunsch L (2009) J Phys Chem C 113:7616–7623CrossRefGoogle Scholar
  59. 59.
    Tarabek J, Yang SF, Dunsch L (2009) Chemphyschem 10:1037–1043CrossRefGoogle Scholar
  60. 60.
    Zhang L, Popov A, Yang SF, Klod S, Rapta P, Dunsch L (2010) Phys Chem Chem Phys 12:7840–7847CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Qi Liang Lu
    • 1
  • Wen Jun Song
    • 1
  • Jun Wei Meng
    • 1
  • Jian Guo Wan
    • 2
  1. 1.School of Physics and Material ScienceAnhui UniversityHefeiPeople’s Republic of China
  2. 2.National Laboratory of Solid State Microstructures and Department of PhysicsNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations