Journal of Molecular Modeling

, Volume 19, Issue 3, pp 1237–1250 | Cite as

Comparison of the structural characteristics of Cu2+-bound and unbound α-syn12 peptide obtained in simulations using different force fields

  • Zanxia Cao
  • Lei Liu
  • Liling Zhao
  • Haiyan Li
  • Jihua Wang
Original Paper


The effects of Cu2+ binding and the utilization of different force fields when modeling the structural characteristics of α-syn12 peptide were investigated. To this end, we performed extensive temperature replica exchange molecular dynamics (T-REMD) simulations on Cu2+-bound and unbound α-syn12 peptide using the GROMOS 43A1, OPLS-AA, and AMBER03 force fields. Each replica was run for 300 ns. The structural characteristics of α-syn12 peptide were studied based on backbone dihedral angle distributions, free-energy surfaces obtained with different reaction coordinates, favored conformations, the formation of different Turn structures, and the solvent exposure of the hydrophobic residues. The findings show that AMBER03 prefers to sample helical structures for the unbound α-syn12 peptide and does not sample any β-hairpin structure for the Cu2+-bound α-syn12 peptide. In contrast, the central structure of the major conformational clusters for the Cu2+-bound and unbound α-syn12 peptide according to simulations performed using the GROMOS 43A1 and OPLS-AA force fields is a β-hairpin with Turn9-6. Cu2+ can also promote the formation of the β-hairpin and increase the solvent exposure of hydrophobic residues, which promotes the aggregation of α-syn12 peptide. This study can help us to understand the mechanisms through which Cu2+ participates in the fibrillation of α-syn12 peptide at the atomic level, which in turn represents a step towards elucidating the nosogenesis of Parkinson’s disease.


The representative structures of Cu2+-bound and unbound α-syn12 peptide using three different force fields


Cu2+-bound α-syn12 peptide Effects of Cu2+ Effects of different force fields Temperature replica exchange Free-energy surface Solvent exposure of hydrophobic residues 



The authors thank Prof. H.J.C. Berendsen (University of Groningen) for providing us with the GROMACS programs.

This work was supported by grants 31000324, 61271378 and 30970561 from the National Natural Science Foundation of China and grants 2009ZRA14027 and 2009ZRA14028 from the Shandong Province Natural Science Foundation.

Supplementary material

894_2012_1664_MOESM1_ESM.doc (84 kb)
Fig. S1a–b Initial structures of a the unbound and b the Cu2+-bound α-syn12 peptide. (DOC 84 kb)


  1. 1.
    Bisaglia M, Mammi S, Bubacco L (2009) FASEB J 23:329–340CrossRefGoogle Scholar
  2. 2.
    Yoon J, Jang S, Lee K, Shin S (2009) J Biomol Struct Dyn 27:259–270CrossRefGoogle Scholar
  3. 3.
    Yoshiki Y, Masami M, Hiroaki S, Takashi N, Shinya H, Shin-ichi H, Koichi K, Masato H (2010) J Mol Biol 395:445–456CrossRefGoogle Scholar
  4. 4.
    Uversky VN, Li J, Fink AL (2001) J Biol Chem 276:44284–44296CrossRefGoogle Scholar
  5. 5.
    Rasia RM, Bertoncini CW, Marsh D, Hoyer W, Cherny D, Zweckstetter M, Griesinger C, Jovin TM, Fernandez CO (2005) Proc Natl Acad Sci USA 102:4294–4299Google Scholar
  6. 6.
    Paik SR, Shin HJ, Lee JH, Chang CS, Kim J (1999) Biochem J 340(Pt 3):821–828CrossRefGoogle Scholar
  7. 7.
    Bharathi, Rao KS (2007) Biochem Biophys Res Commun 359:115–120CrossRefGoogle Scholar
  8. 8.
    Sung YH, Rospigliosi C, Eliezer D (2006) Biochim Biophys Acta 1764:5–12CrossRefGoogle Scholar
  9. 9.
    Drew SC, Leong SL, Pham CL, Tew DJ, Masters CL, Miles LA, Cappai R, Barnham KJ (2008) J Am Chem Soc 130:7766–7773CrossRefGoogle Scholar
  10. 10.
    Jackson MS, Lee JC (2009) Inorg Chem 48:9303–9307CrossRefGoogle Scholar
  11. 11.
    Binolfi A, Rodriguez EE, Valensin D, D’Amelio N, Ippoliti E, Obal G, Duran R, Magistrato A, Pritsch O, Zweckstetter M, Valensin G, Carloni P, Quintanar L, Griesinger C, Fernandez CO (2010) Inorg Chem 49:10668–10679CrossRefGoogle Scholar
  12. 12.
    Valensin D, Camponeschi F, Luczkowski M, Baratto MC, Remelli M, Valensin G, Kozlowski H (2011) Metallomics 3:292–302CrossRefGoogle Scholar
  13. 13.
    Lee JC, Gray HB, Winkler JR (2008) J Am Chem Soc 130:6898–6899CrossRefGoogle Scholar
  14. 14.
    Binolfi A, Lamberto GR, Duran R, Quintanar L, Bertoncini CW, Souza JM, Cervenansky C, Zweckstetter M, Griesinger C, Fernandez CO (2008) J Am Chem Soc 130:11801–11812CrossRefGoogle Scholar
  15. 15.
    Ahmad A, Burns CS, Fink AL, Uversky VN (2012) J Biomol Struct Dyn 29:825–842CrossRefGoogle Scholar
  16. 16.
    Dudzik CG, Walter ED, Millhauser GL (2011) Biochemistry 50:1771–1777CrossRefGoogle Scholar
  17. 17.
    Riihimaki ES, Martinez JM, Kloo L (2007) J Phys Chem B 111:10529–10537CrossRefGoogle Scholar
  18. 18.
    Miller Y, Ma B, Nussinov R (2010) Proc Natl Acad Sci USA 107:9490–9495Google Scholar
  19. 19.
    Rose F, Hodak M, Bernholc J (2011) Sci Rep 1:11CrossRefGoogle Scholar
  20. 20.
    Matthes D, de Groot BL (2009) Biophys J 97:599–608CrossRefGoogle Scholar
  21. 21.
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) J Comput Chem 24:1999–2012CrossRefGoogle Scholar
  22. 22.
    Best RB, Buchete NV, Hummer G (2008) Biophys J 95:L07–09CrossRefGoogle Scholar
  23. 23.
    MacKerell AD Jr, Feig M, Brooks CL 3rd (2004) J Am Chem Soc 126:698–699CrossRefGoogle Scholar
  24. 24.
    Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105:6474–6487CrossRefGoogle Scholar
  25. 25.
    Todorova N, Legge FS, Treutlein H, Yarovsky I (2008) J Phys Chem B 112:11137–11146CrossRefGoogle Scholar
  26. 26.
    Piana S, Lindorff-Larsen K, Shaw DE (2011) Biophys J 100:L47–49CrossRefGoogle Scholar
  27. 27.
    Petra K, Alfonso DS, Michal O, Robert B (2012) Biophys J 102:1897–1906CrossRefGoogle Scholar
  28. 28.
    Nguyen PH, Li MS, Derreumaux P (2011) Phys Chem Chem Phys 13:9778–9788CrossRefGoogle Scholar
  29. 29.
    Cao Z, Wang J (2010) J Biomol Struct Dyn 27:651–661CrossRefGoogle Scholar
  30. 30.
    Cao Z, Liu L, Wang J (2011) J Biomol Struct Dyn 29:527–539CrossRefGoogle Scholar
  31. 31.
    Cao Z, Liu L, Zhao L, Wang J (2011) Int J Mol Sci 12:8259–8274CrossRefGoogle Scholar
  32. 32.
    Hess B (2008) J Chem Theory Comput 4:116–122CrossRefGoogle Scholar
  33. 33.
    van der Spoel D, van Drunen R, Berendsen HJC (1994) GRoningen MAchine for Chemical Simulations. BIOSON Research Institute, GroningenGoogle Scholar
  34. 34.
    van Gunsteren WF, Billeter SR, Eising AA, Hunenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag AG an der ETH Zürich, ZürichGoogle Scholar
  35. 35.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, pp 331–342Google Scholar
  36. 36.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impy RW, Klein ML (1983) J Chem Phys 79:926–935Google Scholar
  37. 37.
    Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  38. 38.
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  39. 39.
    Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126:014101CrossRefGoogle Scholar
  40. 40.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  41. 41.
    Sugita Y, Okamoto Y (1999) Chem Phys Lett 314:141–151CrossRefGoogle Scholar
  42. 42.
    Patriksson A, van der Spoel D (2008) Phys Chem Chem Phys 10:2073–2077CrossRefGoogle Scholar
  43. 43.
    Cao Z, Liu L, Wu P, Wang J (2011) Acta Biochim Biophys Sinica 43:172–180CrossRefGoogle Scholar
  44. 44.
    Hu H, Elstner M, Hermans J (2003) Proteins 50:451–463CrossRefGoogle Scholar
  45. 45.
    Best RB, Mittal J (2010) J Phys Chem B 114:8790–8798CrossRefGoogle Scholar
  46. 46.
    Heinig M, Frishman D (2004) Nucleic Acids Res 32:W500–502CrossRefGoogle Scholar
  47. 47.
    Garcia AE (1992) Phys Rev Lett 68:2696–2699CrossRefGoogle Scholar
  48. 48.
    Dobson CM (2003) Nature 426:884–890CrossRefGoogle Scholar
  49. 49.
    Takao Y, Yuji S, Yuko O (2004) Chem Phys Lett 386:460–467CrossRefGoogle Scholar
  50. 50.
    Rueda M, Ferrer-Costa C, Meyer T, Perez A, Camps J, Hospital A, Gelpi JL, Orozco M (2007) Proc Natl Acad Sci USA 104:796–801Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zanxia Cao
    • 1
    • 2
  • Lei Liu
    • 3
  • Liling Zhao
    • 1
    • 2
  • Haiyan Li
    • 1
    • 2
  • Jihua Wang
    • 1
    • 2
  1. 1.Shandong Provincial Key Laboratory of Functional Macromolecular BiophysicsDezhouChina
  2. 2.Department of PhysicsDezhou UniversityDezhouChina
  3. 3.Department of Computer Science and TechnologyDezhou UniversityDezhouChina

Personalised recommendations