Journal of Molecular Modeling

, Volume 19, Issue 3, pp 1251–1258 | Cite as

Effect of varying the 1–4 intramolecular scaling factor in atomistic simulations of long-chain N-alkanes with the OPLS-AA model

  • Xianggui Ye
  • Shengting CuiEmail author
  • Valmor F. de Almeida
  • Bamin KhomamiEmail author
Original Paper


A comprehensive molecular dynamics simulation study of n-alkanes using the optimized potential for liquid simulation with all-atoms (OPLS-AA) force field at ambient condition has been performed. Our results indicate that while simulations with the OPLS-AA force field accurately predict the liquid state mass density for n-alkanes with carbon number equal or less than 10, for n-alkanes with carbon number equal or exceeding 12, the OPLS-AA force field with the standard scaling factor for the 1–4 intramolecular Van der Waals and electrostatic interaction gives rise to a quasi-crystalline structure. We found that accurate predictions of the liquid state properties are obtained by successively reducing the aforementioned scaling factor for each increase of the carbon number beyond n-dodecane. To better understand the effects of reducing the scaling factor, its influence on the torsion potential profile, and the corresponding gauche-trans conformer distribution, heat of vaporization, melting point, and self-diffusion coefficient for n-dodecane were investigated. This relatively simple procedure enables more accurate predictions of the thermo-physical properties of longer n-alkanes.


Alkanes Chain stiffness Intramolecular interaction Molecular dynamics OPLS Scaling factor 



This work was supported by the US Department of Energy, Office of Nuclear Energy under the Nuclear Energy University Program (DOE-NEUP), contract number: DE-AC07-051D14517. Computing resources used at the Center for Advanced Modeling and Simulation at the Idaho National Laboratory through a collaboration with the Nuclear Energy Advanced Modeling and Simulation program of the Nuclear Energy Office of DOE are greatly appreciated. The Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the DOE under contract No. DE-AC05-00OR22725.

Supplementary material

894_2012_1651_MOESM1_ESM.doc (951 kb)
ESM 1 See supplementary material for mass density, and end-to-end distance for n-decane, n-tetradecane, and n-hexadecane for various scaling factors corresponding to crystalline and disordered state, and comparison of torsion potential profile for n-dodecane for the terminal dihedral: CH3-CH2-CH2-CH2 in gas phase for varying 1–4 intramolecular scaling factor. (DOC 951 kb)


  1. 1.
    MacKerell AD, Bashford D, Bellott M et al. (1998) J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  2. 2.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  3. 3.
    Jorgensen WL, TiradoRives J (1988) J Am Chem Soc 110:1657–1666CrossRefGoogle Scholar
  4. 4.
    Jorgensen WL, Maxwell DS, TiradoRives J (1996) J Am Chem Soc 118:11225–11236CrossRefGoogle Scholar
  5. 5.
    Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) J Am Chem Soc 106:765–784CrossRefGoogle Scholar
  6. 6.
    Thomas LL, Christakis TJ, Jorgensen WL (2006) J Phys Chem B 110:21198–21204CrossRefGoogle Scholar
  7. 7.
    Piringer OG, Baner AL (2008) Plastic packaging: interactions with food and pharmaceuticals, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  8. 8.
    Ungerer P, Nieto-Draghi C, Rousseau B, Ahunbay G, Lachet V (2007) J Mol Liq 134:71–89CrossRefGoogle Scholar
  9. 9.
    Firlej L, Kuchta B, Roth MW, Wexler C (2011) J Mol Model 17:811–816CrossRefGoogle Scholar
  10. 10.
    Bresme F, Chacon E, Tarazona P (2010) Mol Phys 108:1887–1898CrossRefGoogle Scholar
  11. 11.
    Siu SWI, Pluhackova K, Boeckmann RA (2012) J Chem Theor Comp 8:1459–1470. During the preparation of this manuscript, the paper by Siu et al. appeared that used a different approach to improve the performance of the OPLS-AA potentialCrossRefGoogle Scholar
  12. 12.
    Plimpton S (1995) J Comp Phys 117:1–19. URL: Google Scholar
  13. 13.
    Price ML, Ostrovsky D, Jorgensen WL (2001) J Comp Chem 22:1340–1352CrossRefGoogle Scholar
  14. 14.
    Darden T, York D, Pedersen D (1993) J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  15. 15.
    Chandrasekhar S (1992) Liquid Crystals, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. 16.
    de Gennes PG, Prost J (1993) The Physics of Liquid Cyrstal, 2nd edn. Clarendon, OxfordGoogle Scholar
  17. 17.
    Cui ST, Gupta SA, Cummings PT, Cochran HD (1996) J Chem Phys 105:1214–1220CrossRefGoogle Scholar
  18. 18.
    Menger FM, D’Angelo LL (1988) J Am Chem Soc 110:8241–8244CrossRefGoogle Scholar
  19. 19.
    Casal HL, Yang PW, Mantsch HH (1986) Can J Chem 64:1544–1547CrossRefGoogle Scholar
  20. 20.
    Casal HL, Mantsch HH (1989) J Mol Struct 192:41–45CrossRefGoogle Scholar
  21. 21.
    Casal HL, Mantsch HH (1989) J Mol Struct 213:328–328CrossRefGoogle Scholar
  22. 22.
    Holler F, Callis JB (1989) J Phys Chem 93:2053–2058CrossRefGoogle Scholar
  23. 23.
    Deleuze MS, Pang WN, Salam A, Shang RC (2001) J Am Chem Soc 123:4049–4061CrossRefGoogle Scholar
  24. 24.
    Compton DAC, Montero S, Murphy WF (1980) J Phys Chem 84:3587–3591CrossRefGoogle Scholar
  25. 25.
    Balabin RM (2009) J Phys Chem A 113:1012–1019CrossRefGoogle Scholar
  26. 26.
    Riddick JA, Bunger WB, Sakano TK (1986) Techniques of Chemistry, Vol. II, 4th edn, Organic Solvents, Physical Properties and Methods of Purification. Wiley, New YorkGoogle Scholar
  27. 27.
    Tofts PS, Lloyd D, Clark CA, Barker GJ, Parker GJM, McConville P, Baldock C, Pope JM (2000) Magn Reson Med 43:368–374CrossRefGoogle Scholar
  28. 28.
    Heyes DM, Cass MJ, Powles JG, Evans WAB (2007) J Phys Chem B 111:1455–1464CrossRefGoogle Scholar
  29. 29.
    Yeh IC, Hummer G (2004) J Phys Chem B 108:15873–15879CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Materials Research and Innovative Laboratory (MRAIL), Department of Chemical and Biomolecular EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.Sustainable Energy and Research CenterUniversity of TennesseeKnoxvilleUSA
  3. 3.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations