Journal of Molecular Modeling

, Volume 19, Issue 3, pp 1195–1204 | Cite as

B30H8, B39H9 2−, B42H10, B48H10, and B72H12: polycyclic aromatic snub hydroboron clusters analogous to polycyclic aromatic hydrocarbons

  • Hui Bai
  • Qiang Chen
  • Ya-Fan Zhao
  • Yan-Bo Wu
  • Hai-Gang Lu
  • Jun Li
  • Si-Dian Li
Original Paper

Abstract

Calculations performed at the ab initio level using the recently reported planar concentric π-aromatic B18H6 2+(1) [Chen Q et al. (2011) Phys Chem Chem Phys 13:20620] as a building block suggest the possible existence of a new class of B3n H m polycyclic aromatic hydroboron (PAHB) clusters—B30H8(2), B39H9 2−(3), B42H10(4/5), B48H10(6), and B72H12(7)—which appear to be the inorganic analogs of the corresponding C n H m polycyclic aromatic hydrocarbon (PAHC) molecules naphthalene C10H8, phenalenyl anion C13H9 , phenanthrene/anthracene C14H10, pyrene C16H10, and coronene C24H12, respectively, in a universal atomic ratio of B:C = 3:1. Detailed canonical molecular orbital (CMO), adaptive natural density partitioning (AdNDP), and electron localization function (ELF) analyses indicate that, as they are hydrogenated fragments of a boron snub sheet [Zope RR, Baruah T (2010) Chem Phys Lett 501:193], these PAHB clusters are aromatic in nature, and exhibit the formation of islands of both σ- and π-aromaticity. The predicted ionization potentials of PAHB neutrals and electron detachment energies of small PAHB monoanions should permit them to be characterized experimentally in the future. The results obtained in this work expand the domain of planar boron-based clusters to a region well beyond B20, and experimental syntheses of these snub B3n H m clusters through partial hydrogenation of the corresponding bare B3n may open up a new area of boron chemistry parallel to that of PAHCs in carbon chemistry.

Figure

Ab initio calculations predict the existence of polycyclic aromatic hydroboron clusters as fragments of a boron snub sheet; these clusters are analogs of polycyclic aromatic hydrocarbons

Keywords

Polycyclic aromatic hydroboron clusters Ab initio calculations Geometrical structures Electronic structures Aromaticity 

Notes

Acknowledgments

This work was jointly supported by the National Science Foundation of China (nos. 20873117 and 21003086)) and Shanxi Natural Science Foundation (no. 2010011012-3).

Supplementary material

894_2012_1640_MOESM1_ESM.doc (29.9 mb)
ESM 1 (DOC 30626 kb)

References

  1. 1.
    Cotton FA, Wilkinson G, Murrillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New YorkGoogle Scholar
  2. 2.
    Boustani I (2011) Chem Model 8:1CrossRefGoogle Scholar
  3. 3.
    Vincent MA, Schaefer HF (1981) J Am Chem Soc 103:5677CrossRefGoogle Scholar
  4. 4.
    Tian SX (2005) J Phys Chem A 109:5471CrossRefGoogle Scholar
  5. 5.
    Ricca A, Bauschlicher CW (1997) J Chem Phys 106:2317CrossRefGoogle Scholar
  6. 6.
    Curtiss LA, Pople JA (1989) J Chem Phys 91:4809CrossRefGoogle Scholar
  7. 7.
    Dias JF, Rasul G, Seidl PR, Surya Prakash GK, Olah GA (2003) J Phys Chem A 107:7981CrossRefGoogle Scholar
  8. 8.
    McKee ML, Wang ZX, Schleyer PvR (2000) J Am Chem Soc 122:4781CrossRefGoogle Scholar
  9. 9.
    Schleyer PvR, Subramanian G, Dransfeld A (1996) J Am Chem Soc 118:9988CrossRefGoogle Scholar
  10. 10.
    Goursot A, Pénigault E, Chermette H, Fripiat JG (1986) Can J Chem 64:1752CrossRefGoogle Scholar
  11. 11.
    Jemmis ED, Balakrishnarajan MM, Pancharatna PD (2001) J Am Chem Soc 123:4313CrossRefGoogle Scholar
  12. 12.
    Pancharatna PD, Balakrishnarajan MM, Jemmis ED, Hoffmann R (2012) J Am Chem Soc 134:5916CrossRefGoogle Scholar
  13. 13.
    Olson JK, Boldyrev AI (2009) Inorg Chem 48:10060CrossRefGoogle Scholar
  14. 14.
    Olson JK, Boldyrev AI (2011) Comp Theor Chem 967:1CrossRefGoogle Scholar
  15. 15.
    Olson JK, Boldyrev AI (2012) Chem Phys Lett 523:83CrossRefGoogle Scholar
  16. 16.
    Olson JK, Boldyrev AI (2011) Chem Phys Lett 517:62CrossRefGoogle Scholar
  17. 17.
    Alexandrova AN, Boldyrev AI, Zhai H-J, Wang L-S (2006) Coord Chem Rev 250:2811CrossRefGoogle Scholar
  18. 18.
    Alexandrova AN, Koyle E, Boldyrev AI (2006) J Mol Model 12:569CrossRefGoogle Scholar
  19. 19.
    Boyukata M, Ozdogan C, Güvenc ZB (2007) J Mol Struct (THEOCHEM) 805:91CrossRefGoogle Scholar
  20. 20.
    Yu H-L, Sang RL, Wu YY (2009) J Phys Chem A 113:3382CrossRefGoogle Scholar
  21. 21.
    Szwacki NG, Weber V, Tymczak CJ, Nanoscale J (2009) Res Lett 4:1085Google Scholar
  22. 22.
    Bai H, Li S-D (2011) J Clust Sci 22:525CrossRefGoogle Scholar
  23. 23.
    Chen Q, Li S-D (2011) J Clust Sci 22:513CrossRefGoogle Scholar
  24. 24.
    Chen Q, Bai H, Guo J-C, Miao C-Q, Li S-D (2011) Phys Chem Chem Phys 13:20620CrossRefGoogle Scholar
  25. 25.
    Li D-Z, Lu H-G, Li S-D (2012) J Mol Model 18:3161. doi: 10.1007/s00894-011-1322-y
  26. 26.
    Li D-Z, Chen Q, Lu H-G, Li S-D (2012) Phys Chem Chem Phys (in press; article no. CP-ART-03-2012-040902.R1)Google Scholar
  27. 27.
    Li W-L, Romanescu C, Jian T, Wang L-S (2012) J Am Chem Soc 134:13228CrossRefGoogle Scholar
  28. 28.
    Sergeeva AP, Zubarev DY, Zhai H-J, Boldyrev AI, Wang L-S (2008) J Am Chem Soc 130:7244CrossRefGoogle Scholar
  29. 29.
    Huang W, Sergeeva AP, Zhai H-J, Averkiev BB, Wang L-S, Boldyrev AI (2010) Nat Chem 2:202CrossRefGoogle Scholar
  30. 30.
    Sergeeva AP, Averkiev BB, Zhai H-J, Boldyrev AI, Wang L-S (2011) J Chem Phys 134:224304CrossRefGoogle Scholar
  31. 31.
    Piazza ZA, Li W-L, Romanescu C, Sergeeva AP, Wang L-S, Boldyrev AI (2012) J Chem Phys 136:104310CrossRefGoogle Scholar
  32. 32.
    Zhai H-J, Li S-D, Wang L-S (2007) J Phys Chem A 111:1030CrossRefGoogle Scholar
  33. 33.
    Zhai HJ, Li S-D, Wang L-S (2007) J Am Chem Soc 129:9254CrossRefGoogle Scholar
  34. 34.
    Li S-D, Zhai H-J, Wang L-S (2008) J Am Chem Soc 130:2573CrossRefGoogle Scholar
  35. 35.
    Tang H, Ismail-Beigi S (2007) Phys Rev Lett 99:115501CrossRefGoogle Scholar
  36. 36.
    Yang X, Ding Y, Ni J (2008) Phys Rev B 77:0414402Google Scholar
  37. 37.
    Galeev TR, Chen Q, Guo J-C, Bai H, Miao C-Q, Lu H-G, Sergeeva AP, Li S-D, Boldyrev AI (2011) Phys Chem Chem Phys 13:11575CrossRefGoogle Scholar
  38. 38.
    Zope RR, Baruah T (2010) Chem Phys Lett 501:193CrossRefGoogle Scholar
  39. 39.
    Novoselov KS, Geim AK, Morozov SV (2004) Science 306:666CrossRefGoogle Scholar
  40. 40.
    Zubarev DY, Boldyrev AI (2008) Phys Chem Chem Phys 10:5207CrossRefGoogle Scholar
  41. 41.
    Zubarev DY, Boldyrev AI (2008) J Org Chem 73:9251CrossRefGoogle Scholar
  42. 42.
    Zubarev DY, Boldyrev AI (2009) J Phys Chem A 113:866CrossRefGoogle Scholar
  43. 43.
    Galeev TR, Chen Q, Guo J-C, Bai H, Miao C-Q, Lu H-G, Sergeeva AP, Li S-D, Boldyrev AI (2011) Phys Chem Chem Phys 13:11575CrossRefGoogle Scholar
  44. 44.
    Silvi B, Savin A (1994) Nature 371:683CrossRefGoogle Scholar
  45. 45.
    Becke A, Edgecombe K (1990) J Chem Phys 92:5397CrossRefGoogle Scholar
  46. 46.
    Santos JC, Andres J, Aizman A, Fuentealba P (2005) J Chem Theor Comput 1:83CrossRefGoogle Scholar
  47. 47.
    Beck AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  48. 48.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  49. 49.
    Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503CrossRefGoogle Scholar
  50. 50.
    Saebø S, Almlöf J (1989) Chem Phys Lett 154:83CrossRefGoogle Scholar
  51. 51.
    Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275CrossRefGoogle Scholar
  52. 52.
    Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:281CrossRefGoogle Scholar
  53. 53.
    Head-Gordon M, Head-Gordon T (1994) Chem Phys Lett 220:122CrossRefGoogle Scholar
  54. 54.
    Frisch J, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Gonzalezand C, Pople JA (2004) GAUSSIAN03 (revision A.01). Gaussian, Inc., WallingfordGoogle Scholar
  55. 55.
    Wales DJ, Doye JPK (1979) J Phys Chem A 101:5111CrossRefGoogle Scholar
  56. 56.
    Tian F-Y, Wang Y-X (2008) J Chem Phys 129:024903Google Scholar
  57. 57.
    Popov IA, Bozhenko KV, Boldyrev AI (2012) Nano Res 5:117Google Scholar
  58. 58.
    Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Eikema HNJRv (1996) J Am Chem Soc 118:6317Google Scholar
  59. 59.
    Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2006) Org Lett 8:863Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hui Bai
    • 1
  • Qiang Chen
    • 1
    • 3
  • Ya-Fan Zhao
    • 2
  • Yan-Bo Wu
    • 1
  • Hai-Gang Lu
    • 1
  • Jun Li
    • 2
  • Si-Dian Li
    • 1
    • 3
  1. 1.Institue of Molecular SciencesShanxi UniversityTaiyuanPeople’s Republic of China
  2. 2.Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China
  3. 3.Institute of Materials ScienceXinzhou Teachers’ UniversityXinzhouPeople’s Republic of China

Personalised recommendations