Skip to main content
Log in

Ethylene dimerization catalyzed by mixed phosphine–iminophosphorane nickel(II) complexes: a DFT investigation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A computational study utilizing density functional theory (DFT) was performed to analyze the mechanism of ethylene dimerization catalyzed by (P,N) nickel(II) complexes, where (P,N) is a mixed phosphine–iminophosphorane ligand. Two plausible reaction pathways were considered, namely the Cossee and metallacycle pathways, for three model systems. The fundamental role of ligand assymetry and the importance of steric and trans effects were elucidated. In order to discriminate between both mechanisms, the activation of the precatalyst by trimethylaluminum was modeled. The results obtained allow the establishment of useful guidelines for creating new specifically tailored nickel-based catalysts for controlled dimerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Note that the reported transition state for elimination is the one associated with hydrogen transfer to the metal, which is the first step in butene elimination. The second step involves the release of butene by replacing the still-coordinated C4H8 with a C2H4 molecule. This step could only be modeled by a dynamic approach, so the point at −18.8 kcal mol−1 on the butene elimination path is obviously not meaningful and erroneously suggests that this elimination is reversible. However, as the ethylene is maintained at a high pressure (30 bars), the probability of another C4H8 coordinating is almost null.

References

  1. Vogt D (1996) In: Cornils B, Hermann WA (eds) Applied homogeneous catalysis with organometallic compounds, vol 1. Wiley, Weinheim, pp 245–258

  2. Lappin GR, Sauer JD (1989) Alpha-olefins applications handbook. Marcel Dekker, Berkeley

    Google Scholar 

  3. Kaminsky W, Arndt M (1996) In: Cornils B, Hermann WA (eds) Applied homogeneous catalysis with organometallic compounds, vol 1. Wiley, Weinheim, pp 220–236

  4. Köhn RD, Haufe M, Kociok-Kohn G, Grimm S, Wasserscheid P, Keim W (2000) Selective trimerization of α-olefins with triazacyclohexane complexes of chromium as catalysts. Angew Chem Int Ed 39:4337–4339

    Article  Google Scholar 

  5. Carter A, Cohen SA, Cooley NA, Murphy A, Scutt J, Wass DF (2002) High activity ethylene trimerisation catalysts based on diphosphine ligands. Chem Commun 858–859

  6. Bollmann A, Blann K, Dixon JT, Hess FM, Killian E, Maumela H, McGuinness DS, Morgan DH, Neveling A, Otto S, Overett M, Slawin AMZ, Wasserscheid P, Kuhlmann S (2004) Ethylene tetramerization: a new route to produce 1-octene in exceptionally high selectivities. J Am Chem Soc 126:14712–14713

    Article  CAS  Google Scholar 

  7. McGuinness DS, Wasserscheid P, Morgan DH, Dixon JT (2005) Ethylene trimerization with mixed-donor ligand (N,P,S) chromium complexes: effect of ligand structure on activity and selectivity. Organometallics 24:552–556

    Google Scholar 

  8. Agapie T, Day MW, Henling LM, Labinger JA, Bercaw JE (2006) A chromium-diphosphine system for catalytic ethylene trimerization: synthetic and structural studies of chromium complexes with a nitrogen-bridged diphosphine ligand with ortho-methoxyaryl substituents. Organometallics 25:2733–2742

    Article  CAS  Google Scholar 

  9. Elowe PR, McCann C, Pringle PG, Spitzmesser SK, Bercaw JE (2006) Nitrogen-linked diphosphine ligands with ethers attached to nitrogen for chromium-catalyzed ethylene tri- and tetramerizations. Organometallics 25:5255–5260

    Article  CAS  Google Scholar 

  10. Jabri A, Crewdson P, Gambarotta S, Korobkoc I, Duchateau R (2006) Isolation of a cationic chromium(II) species in a catalytic system for ethylene tri- and tetramerization. Organometallics 25:715–718

    Google Scholar 

  11. Schofer SJ, Day MW, Henling LM, Labinger JA, Bercaw JE (2006) Ethylene trimerization catalysts based on chromium complexes with a nitrogen-bridged diphosphine ligand having ortho-methoxyaryl or ortho-thiomethoxy substituents: well-defined catalyst precursors and investigations of the mechanism. Organometallics 25:2743–2749

    Article  CAS  Google Scholar 

  12. McGuinness DS, Rucklidge AJ, Tooze RP, Slawin AMZ (2007) Cocatalyst influence in selective oligomerization: effect on activity, catalyst stability, and 1-hexene/1-octene selectivity in the ethylene trimerization and tetramerization reaction. Organometallics 26:2561–2569

    Article  CAS  Google Scholar 

  13. Svejda SA, Brookhart M (1999) Ethylene oligomerization and propylene dimerization using cationic (α-diimine)nickel(II) catalysts. Organometallics 18:65–74

    Google Scholar 

  14. Tellman KP, Gibson VC, White AJP, Williams DJ (2005) Selective dimerization/oligomerization of α-olefins by cobalt bis(imino)pyridine catalysts stabilized by trifluoromethyl substituents: group 9 metal catalysts with productivities matching those of iron systems. Organometallics 24:280–286

    Article  Google Scholar 

  15. Speiser F, Braunstein P, Saussine L (2005) Catalytic ethylene dimerization and oligomerization: recent developments with nickel complexes containing P, N-chelating ligands. Acc Chem Res 38:784–793

    Article  CAS  Google Scholar 

  16. Lejeune M, Semeril D, Jeunesse C, Matt D, Peruch F, Lutz PL, Ricard L (2004) Diphosphines with expandable bite angles: highly active ethylene dimerisation catalysts based on upper rim, distally diphosphinated calix[4]arenes. Chem Eur J 10:5354–5360

    Article  CAS  Google Scholar 

  17. Ajellal N, Kuhn MCA, Boff ADG, Horner M, Thomas CM, Carpentier JF, Casagrande OL (2006) Nickel complexes based on tridentate pyrazolyl ligands for highly efficient dimerization of ethylene to 1-butene. Organometallics 25:1213–1216

    Article  CAS  Google Scholar 

  18. Buchard A, Auffrant A, Klemps C, Vu-Do L, Boubekeur L, Le Goff XF, Le Floch P (2007) Highly efficient P–N nickel(II) complexes for the dimerisation of ethylene. Chem Commun 1502–1504

  19. Boubekeur L, Ricard L, Mézailles N, Le Floch P (2005) Synthesis of new mixed phosphineiminophosphorane bidentate ligands and their coordination to group 10 metal centers. Organometallics 24:1065–1074

    Article  CAS  Google Scholar 

  20. Boubekeur L, Ricard L, Mézailles N, Demange M, Auffrant A, Le Floch P (2006) Nitrogen-assisted ortho lithiation: one-pot synthesis of new classes of bidentate and tetradentate mixed P∼N ligands. Organometallics 25:3091–3094

    Article  CAS  Google Scholar 

  21. Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory of atoms and molecules. Wiley-VCH, Weinheim

    Google Scholar 

  22. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  23. Ziegler T (1995) The 1994 Alcan Award Lecture: density functional theory as a practical tool in studies of organometallic energetics and kinetics. Beating the heavy metal blues with DFT. Can J Chem 73:743–761

    Google Scholar 

  24. Morokuma K, Musaev DG (2008) Computational modeling for homogeneous and enzymatic catalysis: a knowledge-base for designing efficient catalysts. Wiley-VCH, Weinheim

  25. Fan L, Krzywicki A, Somogyvari A, Ziegler T (1994) Density functional study of ethylene dimerization by (Acetylacetonato)nickel hydride Inorg Chem 33:5287–5294

    Article  CAS  Google Scholar 

  26. Bernardi F, Bottoni A, Rossi I (1998) A DFT investigation of ethylene dimerization catalyzed by Ni(0) complexes. J Am Chem Soc 120:7770–7775

    Article  CAS  Google Scholar 

  27. Shiotsuki M, White PS, Brookhart M, Templeton JL (2007) Mechanistic studies of platinum(II)-catalyzed ethylene dimerization: determination of barriers to migratory insertion in diimine Pt(II) hydrido ethylene and ethyl ethylene intermediates. J Am Chem Soc 129:4058–4067

    Google Scholar 

  28. Cossee P (1964) Ziegler–Natta catalysis. I. Mechanism of polymerization of α-olefins with Ziegler–Natta catalysts. J Catal 3:80–88

    Google Scholar 

  29. Fink G, Mülhaupt R, Brintzinger H (1995) Ziegler catalysts. Springer, Berlin

    Book  Google Scholar 

  30. Tempel DJ, Johnson LK, Huff RL, White PS, Brookhart M (2000) Mechanistic studies of Pd(II): α-diimine-catalyzed olefin polymerizations. J Am Chem Soc 122:6686–6700

    Google Scholar 

  31. Leatherman MD, Svejda SA, Johnson LK, Brookhart M (2003) Mechanistic studies of nickel(II) alkyl agostic cations and alkyl ethylene complexes: investigations of chain propagation and isomerization in (α-diimine)Ni(II)-catalyzed ethylene polymerization. J Am Chem Soc 125:3068–3081

    Article  CAS  Google Scholar 

  32. Liu WJ, Brookhart M (2004) Mechanistic studies of palladium(II)-α-diimine-catalyzed polymerizations of cis- and trans-2-butenes. Organometallics 23:6099–6107

    Google Scholar 

  33. Bianchini C, Giambastiani G, Rios IG, Mantovani G, Meli A, Segarra AM (2006) Ethylene oligomerization, homopolymerization and copolymerization by iron and cobalt catalysts with 2,6-(bis-organylimino)pyridyl ligands. Coord Chem Rev 250:1391–1418

    Article  CAS  Google Scholar 

  34. Emrich R, Heinemann O, Jolly PW, Kruger C, Verhovnik GPJ (1997) The role of metallacycles in the chromium-catalyzed trimerization of ethylene. Organometallics 16:1511–1513

    Article  CAS  Google Scholar 

  35. Overett MJ, Blann K, Bollmann A, Dixon JT, Haasbroek D, Killian E, Maumela H, McGuinness DS, Morgan DH (2005) Mechanistic investigations of the ethylene tetramerisation reaction. J Am Chem Soc 127:10723–10730

    Article  CAS  Google Scholar 

  36. Frisch MJ et al. (2003) Gaussian 03, revision B.05. Gaussian, Inc., Pittsburgh

  37. Becke AD (1993) Density–functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  38. Poater A, Solans-Monfort X, Clot E, Coperet E, Eisenstein O (2007) Understanding d 0-olefin metathesis catalysts: which metal, which ligands? J Am Chem Soc 129:8207–8216

    Google Scholar 

  39. Guihaumé J, Halbert S, Eisenstein O, Perutz RN (2012) Hydrofluoroarylation of alkynes with ni catalysts. C–H activation via ligand-to-ligand hydrogen transfer, an alternative to oxidative addition. Organometallics 31:1300–1314

    Article  Google Scholar 

  40. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  41. Cho HG, Cheong BS (2009) Agostic interaction of the smallest zirconium methylidene hydride: reproduction of the distorted structure experimentally observed in matrix infrared spectra. Bull Korean Chem Soc 30:479–481

    Article  CAS  Google Scholar 

  42. Vidal I, Melchor S, Alkorta I, Elguero J, Sundberg MR, Dobado JA (2006) On the existence of α-agostic bonds: bonding analyses of titanium alkyl complexes. Organometallics 25:5638–5647

    Article  CAS  Google Scholar 

  43. Virkkunen V, Pietilä LO, Sundholm F (2003) DFT investigation of the regiospecifity of a model catalyst site for propene polymerisation. Polymer 44:3133–3139

    Article  CAS  Google Scholar 

  44. Fukui K (1981) The path of chemical reactions: the IRC approach. Acc Chem Res 14:363–368

    Google Scholar 

  45. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  46. Liang L-C, Chien PS, Lee P-Y (2008) Phosphorus and olefin substituent effects on the insertion chemistry of nickel(II) hydride complexes containing amido diphosphine ligands. Organometallics 27:3082–3093

    Article  CAS  Google Scholar 

  47. Chen EYX, Marks TJ (2000) Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure−activity relationships. Chem Rev 100:1391–1434

    Google Scholar 

  48. Sinn H, Kaminsky W (1980) Ziegler–Natta catalysis. Adv Organomet Chem 18:99–149

  49. Johnson LK, Killian CM, Brookhart M (1995) New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and α-olefins. J Am Chem Soc 117:6414–6415

    Article  CAS  Google Scholar 

  50. Musaev DG, Froese RDJ, Svensson M, Morokuma K (1997) A density functional study of the mechanism of the diimine−nickel-catalyzed ethylene polymerization reaction. J Am Chem Soc 119:367–374

    Google Scholar 

  51. Margl P, Deng LQ, Ziegler T (1999) A unified view of ethylene polymerization by d 0 and d 0 f n transition metals. 3. Termination of the growing polymer chain. J Am Chem Soc 121:154–162

  52. Talarico G, Budzelaar PHM (2006) A second transition state for chain transfer to monomer in olefin polymerization promoted by group 4 metal catalysts. J Am Chem Soc 128:4524–4525

    Google Scholar 

  53. Tellmann KF, Humphries MJ, Rzepa HS, Gibson VC (2004) Experimental and computational study of β-H transfer between cobalt(I) alkyl complexes and 1-alkenes. Organometallics 23:5503–5513

    Google Scholar 

  54. Grubbs RH, Miyashita A (1978) Metallacyclopentanes as catalysts for the linear and cyclodimerization of olefins. J Am Chem Soc 100:7416–7418

    Google Scholar 

  55. McKinney RJ, Thorn DL, Hoffmann R, Stockis A (1981) Nickelacyclopentane complexes. A theoretical investigation. J Am Chem Soc 103:2595–2603

    Google Scholar 

  56. Hsiao J, Su M-D (2008) Theoretical characterizations of the ring expansion of a metallacyclopropane to a metallacyclopentane. Organometallics 27:4139–4146

    Google Scholar 

  57. Klein H-F, Bickelhaupt A, Lemke M, Jung T, Röhr C (1995) Synthesis and structure of octahedral nickel(IV) complexes containing two chelating acylphenolato ligands. Chem Lett 24:467–468

    Google Scholar 

  58. Patra AK, Mukherjee R (1999) Direct detection of aqueous diazene: its UV spectrum and concerted dismutation. Inorg Chem 38:1388–1393

    Google Scholar 

  59. Dimitrov V, Linden A (2003) A pseudotetrahedral, high-oxidation-state organonickel compound: synthesis and structure of bromotris(1-norbornyl)nickel(IV). Angew Chem Int Ed 42:2631–2633

    Google Scholar 

  60. Blok ANJ, Budzelaar PHM, Gal AW (2003) Mechanism of ethene trimerization at an ansa-(arene)(cyclopentadienyl) titanium fragment. Organometallics 22:2564–2570

    Google Scholar 

  61. Brückner A, Jabor JK, McConnell AEC, Webb PB (2008) Monitoring structure and valence state of chromium sites during catalyst formation and ethylene oligomerization by in situ EPR spectroscopy. Organometallics 27:3849–3856

    Google Scholar 

  62. Bianchini C, Gatteschi D, Giambastiani G, Guerrero Rios I, Ienco A, Laschi F, Mealli C, Meli A, Sorace L, Toti A, Vizza F (2007) Electronic influence of the thienyl sulfur atom on the oligomerization of ethylene by cobalt(II) 6-(thienyl)-2-(imino)pyridine catalysis. Organometallics 26:726–739

    Google Scholar 

  63. Zurek E, Ziegler T (2002) Toward the identification of dormant and active species in MAO (methylaluminoxane)-activated, dimethylzirconocene-catalyzed olefin polymerization. Organometallics 21:83–92

    Google Scholar 

  64. Janse van Rensburg W, van den Berg J-A, Steynberg PJ (2007) Role of MAO in chromium-catalyzed ethylene tri- and tetramerization: a DFT study. Organometallics 26:1000–1013

  65. Tognetti V, Le Floch P, Adamo C (2010) How the choice of a computational model could rule the chemical interpretation: the Ni(II) catalyzed ethylene dimerization as a case study. J Comput Chem 31:1053–1062

    Google Scholar 

  66. Tognetti V, Fayet G, Adamo C (2010) Can molecular quantum descriptors predict the butene selectivity in nickel(II) catalyzed ethylene dimerization? A QSPR study. Int J Quantum Chem 110:540–548

    Google Scholar 

Download references

Acknowledgments

The CNRS (Centre National de la Recherche Scientifique), the Ecole Polytechnique, the Ecole Nationale Supérieure de Chimie, and the IDRIS (Institut du Développement et des Ressources en Informatique; for computer time, projects no. 171616 and 72115) are thanked for supporting this work. This paper is dedicated to the memory of Pascal Le Floch, who initiated the collaborative work between our groups.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Adamo.

Additional information

The author Pascal Le Floch is now deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tognetti, V., Buchard, A., Auffrant, A. et al. Ethylene dimerization catalyzed by mixed phosphine–iminophosphorane nickel(II) complexes: a DFT investigation. J Mol Model 19, 2107–2118 (2013). https://doi.org/10.1007/s00894-012-1631-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1631-9

Keywords

Navigation