Journal of Molecular Modeling

, Volume 19, Issue 2, pp 847–850

Nucleus-independent chemical shift criterion for aromaticity in π-extended tetraoxa[8]circulenes

  • Gleb V. Baryshnikov
  • Boris F. Minaev
  • Michael Pittelkow
  • Christian B. Nielsen
  • Roberto Salcedo
Original Paper

Abstract

Recently synthesized π-extended symmetrical tetraoxa[8]circulenes that exhibit electroluminescent properties were calculated at the density functional theory (DFT) level using the quantum theory of atoms in molecules (QTAIM) approach to electron density distribution analysis. Nucleus-independent chemical shift (NICS) indices were used to characterize the aromaticity of the studied molecules. The tetraoxa[8]circulene molecules were found to consist of two antiaromatic perimeters (according to the Hückel “4n” antiaromaticity rule) that include 8 and 24 π-electrons. Conversely, NICS calculations demonstrated the existence of a common π-extended system (distributed like a flat ribbon) in the studied tetraoxa[8]circulene molecules. Thus, these symmetrical tetraoxa[8]circulene molecules provide examples of diatropic systems characterized by the presence of induced diatropic ring currents.

Figure

Special aromaticity of the tetraoxa[8]circulenes

Keywords

Tetraoxa[8]circulenes Aromaticity Antiaromaticity Hückel rule NICS indices Cyclooctatetraene ring 

References

  1. 1.
    Eskildsen J, Reenberg T, Christensen JB (2000) Substituted tetraoxa[8]circulenes—new members of the liquid crystal family. Eur J Org Chem 2000:1637–1640Google Scholar
  2. 2.
    Nielsen CB, Brock-Nannestad T, Reenberg TK, Hammershøj P, Christensen JB, Stouwdam JW, Pittelkow M (2010) Organic light-emitting diodes from symmetrical and unsymmetrical π-extended tetraoxa[8]circulene. Chem Eur J 16:13030–13034CrossRefGoogle Scholar
  3. 3.
    Brock-Nannestad T, Nielsen CB, Schau-Magnussen M, Hammershøj P, Reenberg TK, Petersen AB, Trpcevski D, Pittelkow M (2011) Tetra-tert-butyltetraoxa[8]circulene and its unusual aggregation behaviour. Eur J Org Chem 2011:6320–6325Google Scholar
  4. 4.
    Eskildsen J, Hammershøj P, Reenberg TK, Larsen U, Pittelkow M, Leth SM, Peck RA, Christensen JB (2007) Substituted tetraoxa[8]circulenes. Asian Chem Lett 11:211–218Google Scholar
  5. 5.
    Rathore R, Abdelwahed SH (2004) Soluble cycloannulated tetroxa[8]circulane derivatives: synthesis, optical and electrochemical properties, and generation of their robust cation–radical salts. Tetrahedron Lett 45:5267–5270CrossRefGoogle Scholar
  6. 6.
    Yu K, Sumerin VV, Shpanchenko RV, Balenkova ES, Nenajdenko VG (2006) “Sulflower”: a new form of carbon sulfide. Angew Chem Int Ed 118:7527–7530Google Scholar
  7. 7.
    Yu CK, Balenkova ES, Nenajdenko VG (2008) From thiophene to sulflower. Mendeleev Commun 18:171–179CrossRefGoogle Scholar
  8. 8.
    Salcedo R, Sansores LE, Picazo A, Sansón L (2004) [8]Circulene. Theoretical approach. J Mol Struct (THEOCHEM) 678:211–215CrossRefGoogle Scholar
  9. 9.
    Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105:3842–3888CrossRefGoogle Scholar
  10. 10.
    Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NJRvE (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
  11. 11.
    Schleyer PvR, Manoharan M, Wang Z-X, Kiran B, Jiao H, Puchta R, Hommes NJRvE (2001) Dissected nucleus-independent chemical shift analysis of π-aromaticity and antiaromaticity. Org Lett 3:2465–2468CrossRefGoogle Scholar
  12. 12.
    Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2006) Which NICS aromaticity index for planar π rings is best? Org Lett 8:863–866CrossRefGoogle Scholar
  13. 13.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  14. 14.
    Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789Google Scholar
  15. 15.
    Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  16. 16.
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Montgomery J, Vreven J, Kudin K, Burant J, Millam J, Iyengar S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox RJ, Hratchian H, Cross J, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski J, Ayala P, Morokuma K, Voth G, Salvador P, Dannenberg J, Zakrzewski V, Dapprich S, Daniels A, Strain M, Farkas O, Malick D, Rabuck A, Raghavachari K, Foresman J, Ortiz J, Cui Q, Baboul A, Clifford S, Cioslowski J, Stefanov B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R, Fox D, Keith T, Al-Laham M, Peng C, Nanayakkara A, Challacombe M, Gill P, Johnson B, Chen W, Wong M, Gonzalez C, Pople J (2004) Gaussian 03, revision C.02. Gaussian, Inc., WallingfordGoogle Scholar
  17. 17.
    London F (1937) Théorie quantique des courants interatomiques dans les combinaisons aromatiques. J Phys Radium 8:397–409CrossRefGoogle Scholar
  18. 18.
    Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104:5497–5509CrossRefGoogle Scholar
  19. 19.
    McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648Google Scholar
  20. 20.
    Schleyer PvR, Jiao H, Hommes NJRvE, Malkin VG, Malkina OL (1997) An evaluation of the aromaticity of inorganic rings: refined evidence from magnetic properties. J Am Chem Soc 119:12669–12670CrossRefGoogle Scholar
  21. 21.
    Foroutan-Nejad C, Shahbazian S, Feixas F, Rashidi-Ranjbar P, Solà MAA (2011) Dissected ring current model for assessing magnetic aromaticity: a general approach for both organic and inorganic rings. J Comput Chem 32:2422–2431CrossRefGoogle Scholar
  22. 22.
    Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon, OxfordGoogle Scholar
  23. 23.
    Keith TA (2010) AIMAll, version 10.07.25. http://www.aim.tkgristmill.com
  24. 24.
    Bukalov SS, Leites LA, Lyssenko KA, Aysin RR, Korlyukov AA, Zubavichus JV, Chernichenko KY, Balenkova ES, Nenajdenko VG, Antipin MY (2008) Two modifications formed by “sulflower” C16S8 molecules, their study by XRD and optical spectroscopy (Raman, IR, UV-Vis) methods. J Phys Chem A 112:10949–10961Google Scholar
  25. 25.
    Gahungu G, Zhang J (2008) Shedding light on octathio[8]circulene and some of its plate-like derivatives. Phys Chem Chem Phys 10:1743–1747CrossRefGoogle Scholar
  26. 26.
    Gribanova TN, Zefirov NS, Minkin VI (2009) Quantum-chemical study of heteroanalogues of [8]circulenes and their derivatives. Dokl Chem 426:105–110CrossRefGoogle Scholar
  27. 27.
    Gribanova TN, Zefirov NS, Minkin VI (2010) Structure and stability of the heteroannulated [8–10]circulenes: a quantum-chemical study. Pure Appl Chem 82:1011–1024CrossRefGoogle Scholar
  28. 28.
    Napolion B, Hagelberg F, Huang M-J, Watts JD, Simeon TM, Vereen D, Walters WL, Williams QL (2011) Theoretical investigation into the structural, thermochemical, and electronic properties of the decathio[10]circulene. J Phys Chem A 115:8682–8690CrossRefGoogle Scholar
  29. 29.
    Andjelković L, Perić M, Zlatar M, Grubišić S, Gruden-Pavlović M (2012) Magnetic criteria of aromaticity in a benzene cation and anion: how does the Jahn–Teller effect influence the aromaticity? Tetrahedron Lett 53:794–799CrossRefGoogle Scholar
  30. 30.
    Minaev BF, Baryshnikov GV, Minaeva VA (2011) Density functional theory study of electronic structure and spectra of tetraoxa[8]circulenes. Comp Theor Chem 972:68–74CrossRefGoogle Scholar
  31. 31.
    Minaeva VA, Minaev BF, Baryshnikov GV, Agren H, Pittelkow M (2012) Experimental and theoretical study of IR and Raman spectra of tetraoxa[8]circulenes. Vib Spectrosc 61:156–166CrossRefGoogle Scholar
  32. 32.
    Radenković S, Gutman I, Bultinck P (2012) A comparative study of aromaticity in tetraoxa[8]circulenes. J Phys Chem A 116:9421–9430. doi:10.1021/jp307281y Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gleb V. Baryshnikov
    • 1
  • Boris F. Minaev
    • 1
    • 2
  • Michael Pittelkow
    • 3
  • Christian B. Nielsen
    • 3
  • Roberto Salcedo
    • 4
  1. 1.Bohdan Khmelnytsky National UniversityCherkasyUkraine
  2. 2.Theoretical Chemistry, School of BiotechnologyRoyal Institute of TechnologyStockholmSweden
  3. 3.Department of ChemistryUniversity of CopenhagenCopenhagen ØDenmark
  4. 4.Instituto de Investigaciones en MaterialesUniversidad Nacional Autonoma de MéxicoMexico D.F.Mexico

Personalised recommendations