Journal of Molecular Modeling

, Volume 19, Issue 3, pp 1211–1225

The effect of C-vacancy on hydrogen storage and characterization of H2 modes on Ti functionalized C60 fullerene A first principles study

  • Ahmad S. Shalabi
  • Atef M. El Mahdy
  • Hayam O. Taha
Original Paper


Density functional theory calculations were performed to examine the effect of a C vacancy on the physisorption of H2 onto Ti-functionalized C60 fullerene when H2 is oriented along the x-, y-, and z-axes of the fullerene. The effect of the C vacancy on the physisorption modes of H2 was investigated as a function of H2 binding energy within the energy window (−0.2 to −0.6 eV) targeted by the Department of Energy (DOE), and as functions of a variety of other physicochemical properties. The results indicate that the preferential orientations of H2 in the defect-free (i.e., no C vacancy) C60TiH2 complex are along the x- and y-axes of C60 (with adsorption energies of −0.23 and −0.21 eV, respectively), making these orientations the most suitable ones for hydrogen storage, in contrast to the results obtained for defect-containing fullerenes. The defect-containing (i.e., containing a C vacancy) C59TiH2 complex do not exhibit adsorption energies within the targeted energy range. Charge transfer occurs from Ti 3d to C 2p of the fullerene. The binding of H2 is dominated by the pairwise support–metal interaction energy E(i)Cn...Ti, and the role of the fullerene is not restricted to supporting the metal. The C vacancy enhances the adsorption energy of Ti, in contrast to that of H2. A significant reduction in the energy gap of the pristine C60 fullerene is observed when TiH2 is adsorbed by it. While the Cn fullerene readily participates in nucleophilic processes, the adjacent TiH2 fragment is available for electrophilic processes.


The effect of a C vacancy on the interaction of H2 with Ti-functionalized C60 fullerene. H2 preferentially orients itself along the x- and y-axes of C60, yielding adsorption energies in the energy window targeted by the DOE. The C vacancy enhances the adsorption energy of Ti, in contrast to that of H2. The role of fullerene is not restricted to supporting the metal. The physicochemical properties investigated in the present work characterize the H2 interaction


C vacancy Hydrogen storage Characterization Ti-functionalized fullerene 


  1. 1.
    Li J, Furuta T, Goto H, Ohasi T, Fujiwara Y, Yip S (2003) J Chem Phys 119:2376CrossRefGoogle Scholar
  2. 2.
    Venkataramanan NS, Sahara R, Mizuseki H, Kawazoe Y (2008) J Phys Chem C 112:19676–19679CrossRefGoogle Scholar
  3. 3.
    Khazaei M, Bahramy MS, Venkataramanan NS, Mizuseki H, Kawazoe Y (2009) J Appl Phys 106:094303CrossRefGoogle Scholar
  4. 4.
    Jorio A, Dresselhaus G (2004) Encyclopedia of physical science and technology. Elsevier, Amsterdam, p. 315Google Scholar
  5. 5.
    Subramoney S (2001) Encyclopedia of physical science and technology. Elsevier, Amsterdam, p. 941Google Scholar
  6. 6.
    Venkataramanan NS, Mizuseki H, Kawazoe Y (2009) Nano 4:253CrossRefGoogle Scholar
  7. 7.
    Chatt J, Duncanson L (1953) J Chem Soc 2939Google Scholar
  8. 8.
    Zhao Y, Kim Y-H, Dilton AC, Heben MJ, Zhang SB (2005) Phys Rev Lett 94:155504CrossRefGoogle Scholar
  9. 9.
    Yildirim T, Iniguez J, Ciraci S (2005) Phys Rev B72:153403Google Scholar
  10. 10.
    Sun G, Wang Q, Jena P, Kawazoe Y (2005) J Am Chem Soc 127:14582CrossRefGoogle Scholar
  11. 11.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299CrossRefGoogle Scholar
  12. 12.
    Petersson GA, Al-Laham MA (1991) J Chem Phys 94:6081CrossRefGoogle Scholar
  13. 13.
    Martyin RL, Illas F (1997) Phys Rev Lett 79:1539CrossRefGoogle Scholar
  14. 14.
    Moreira IPR, Illas F, Martin RL (2002) Phys Rev B65:155102Google Scholar
  15. 15.
    Caballol R, Castell O, Illas F, Malrieu JP, Moreira IPR (1997) J Phys Chem A101:7860CrossRefGoogle Scholar
  16. 16.
    Ricca A, Bauschlicher CW (1994) J Phys Chem 98:12899CrossRefGoogle Scholar
  17. 17.
    Russo TV, Martin RI, Hay PJ (1995) J Chem Phys 102:8023CrossRefGoogle Scholar
  18. 18.
    Siegbahn PE, Crabtree RH (1997) J Am Chem Soc 119:3103CrossRefGoogle Scholar
  19. 19.
    Pacchioni G (2001) In: Woodruff DP (ed) The chemical physics of solid surfaces, vol 9: oxide surfaces. Elsevier, AmsterdamGoogle Scholar
  20. 20.
    Pacchioni G (2000) Surf Rev Lett 7:277Google Scholar
  21. 21.
    Frisch MJ, et al. (2009) Gaussian 09. Gaussian, Inc., PittsburghGoogle Scholar
  22. 22.
    Strobel R, Garche J, Moseley PT, Jorissen L, Wolf G (2006) J Power Sources 159:781CrossRefGoogle Scholar
  23. 23.
    Yildirim T, Ciraci S (2005) Phys Rev Lett 94:175501CrossRefGoogle Scholar
  24. 24.
    Shalabi AS, Kamel KA, Assem MM (1995) Theor Chem Acta 91:73Google Scholar
  25. 25.
    Shalabi AS, Nour EM, Abdel Halim WS (2000) Int J Quant Chem 76:10Google Scholar
  26. 26.
    Abdel Halim WS, Assem MM, Shalabi AS, Soliman KA (2009) Appl Surf Sci 255:7547CrossRefGoogle Scholar
  27. 27.
    Shalabi AS, Assem MM, Abdel Aal S, Soliman KA (2012) J Nanopart Res 14:892CrossRefGoogle Scholar
  28. 28.
    Lopez N, Illas F, Rösch N, Pacchioni G (1999) J Chem Phys 110:48739Google Scholar
  29. 29.
    Fukui K (1982) Science 218:747CrossRefGoogle Scholar
  30. 30.
    Ashra RS, Klemm E (2005) J Polym Sci A43:6445Google Scholar
  31. 31.
    Tarakeshwar P, Kim DM (2005) J Phys Chem B109:7601Google Scholar
  32. 32.
    Wang DL, Shen HT, Gu HM, Zhai YC (2006) J Mol Struc Theochem 776:47Google Scholar
  33. 33.
    Naray-Szabo G, Ferenczy GG (1995) Chem Rev 95:829CrossRefGoogle Scholar
  34. 34.
    Murray JS, Politzer P (1998) Chapter 3. In: Spase AM (ed) Molecular orbital calculations for biological systems. Oxford University Press, New YorkGoogle Scholar
  35. 35.
    Wang X, Li X, Li H (2008) Phys Lett A 372:6677CrossRefGoogle Scholar
  36. 36.
    Parikth K, Cattanatch K, Rao R, Suh DS, Wu A, Manohar SK (2006) Sens Actuators B113:55Google Scholar
  37. 37.
    Wang D, Sun X, Xin G, Hou D (2010) Physica B405:2745Google Scholar
  38. 38.
    Ragavachari K, Zhang B, Pople JA, Johnson BG, Gill PMW (1994) Chem Phys Lett 220:385CrossRefGoogle Scholar
  39. 39.
    Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New YorkGoogle Scholar
  40. 40.
    Ditchfield R (1972) J Chem Phys 56:5688CrossRefGoogle Scholar
  41. 41.
    Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251CrossRefGoogle Scholar
  42. 42.
    Prasad O, Sinha L, Misra N, Narayan V, Kumar N, Pathak J (2010) J Mol Struct 940:82CrossRefGoogle Scholar
  43. 43.
    Zhang R, Du B, Sun G, Sun Y (2010) Spectrochim Acta A75:1115Google Scholar
  44. 44.
    Pihlaja K, Kleinpeter E (eds) (1994) Carbon 13 chemical shifts in structure and spectrochemical analysis. VCH, Deerfield BeachGoogle Scholar
  45. 45.
    Cinar M, Coruh A, Karabacak M (2011) Spectrochim Acta A83:561Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ahmad S. Shalabi
    • 1
  • Atef M. El Mahdy
    • 2
  • Hayam O. Taha
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceBenha UniversityBenhaEgypt
  2. 2.Department of Physics, Faculty of EducationAin Shams UniversityCairoEgypt

Personalised recommendations