Journal of Molecular Modeling

, Volume 19, Issue 7, pp 2811–2820

An intermediate level of approximation for computing the dual descriptor

Original Paper

Abstract

At present, there are two levels of approximation to compute the dual descriptor (DD). The first uses the total electronic density of the original system along with the electronic densities of the system with one more electron and one less electron, but this procedure is time consuming and normal termination of computation of total electronic densities is not guaranteed. The second level of approximation uses only the electronic densities of frontier molecular orbitals, HOMO and LUMO, to avoid the former approximation; however, the orbital relaxation implicitly included in the first level of approximation is absent in the second, thus risking an incorrect interpretation of local reactivity. Between the lowest occupied molecular orbital (LOMO) and the highest unoccupied molecular orbital (HUMO), a framework to provide an expression of the DD in terms of the electronic densities of all molecular orbitals (except HUMO and LOMO) has been proposed to be implemented by programmers as a computational code. This methodology implies another level of approximation located between the conventional approximation methods mentioned above. In this study, working equations have been oriented toward molecular closed- and open-shell systems. In addition, the mathematical expression for a closed-shell system was applied to acetylene in order to assess the capability of this approach to generate the DD.

Keywords

Local reactivity Dual descriptor Nucleophilic Fukui function Electrophilic Fukui Function Expansion in terms of electronic densities of molecular orbitals Closed-shell system Open-shell system 

References

  1. 1.
    Parr RG, Yang W (1989) Chemical potential derivatives. Density–functional theory of atoms and molecules. Oxford University Press, New York, pp 99–102Google Scholar
  2. 2.
    Parr RG, Yang W (1989) Chemical potential derivatives. Density–functional theory of atoms and molecules. Oxford University Press, New York, pp 95–97Google Scholar
  3. 3.
    Contreras RR, Fuentealba P, Galván M, Pérez P (1999) Chem Phys Lett 304:405–413CrossRefGoogle Scholar
  4. 4.
    Senet P (1996) J Chem Phys 105:6471–6489CrossRefGoogle Scholar
  5. 5.
    Geerlings P, De Proft F (2008) Phys Chem Chem Phys 10:3028–3042CrossRefGoogle Scholar
  6. 6.
    Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871CrossRefGoogle Scholar
  7. 7.
    Kohn W, Sham LJ (1965) Phys Rev A 140:1133–1138Google Scholar
  8. 8.
    Parr RG, Yang W (1995) Annu Rev Phys Chem 46:701–728CrossRefGoogle Scholar
  9. 9.
    Ayers P, Parr RG (2000) J Am Chem Soc 122:2010–2018CrossRefGoogle Scholar
  10. 10.
    Ayers PW (2008) J Math Chem 43:285–303CrossRefGoogle Scholar
  11. 11.
    Ayers PW, Levy M (2000) Theor Chem Acc 103:353–360CrossRefGoogle Scholar
  12. 12.
    Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050CrossRefGoogle Scholar
  13. 13.
    Martínez JI (2011) Chem Phys Lett 506:104–111CrossRefGoogle Scholar
  14. 14.
    Yang W, Parr RG, Pucci R (1984) J Chem Phys 81:2862–2863CrossRefGoogle Scholar
  15. 15.
    Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205–212CrossRefGoogle Scholar
  16. 16.
    Morell C, Grand A, Toro-Labbé A (2006) Chem Phys Lett 425:342–346CrossRefGoogle Scholar
  17. 17.
    Fuentealba P, Parr RG (1991) J Chem Phys 94:5559–5564CrossRefGoogle Scholar
  18. 18.
    Toro-Labbé A (ed) (2007) Theoretical aspects of chemical reactivity, vol 19. Elsevier, AmsterdamGoogle Scholar
  19. 19.
    Ayers PW, Morell C, De Proft F, Geerlings P (2007) Chem Eur J 13:8240–8247CrossRefGoogle Scholar
  20. 20.
    Morell C, Ayers PW, Grand A, Gutiérrez-Oliva S, Toro-Labbé A (2008) Phys Chem Chem Phys 10:7239–7246CrossRefGoogle Scholar
  21. 21.
    Morell C, Hocquet A, Grand A, Jamart-Grégoire B (2008) THEOCHEM 849:46–51CrossRefGoogle Scholar
  22. 22.
    Cárdenas C, Rabi N, Ayers PW, Morell C, Jaramillo P, Fuentealba P (2009) J Phys Chem A 113:8660–8667CrossRefGoogle Scholar
  23. 23.
    Flores-Moreno R (2010) J Chem Theory Comput 6:48–54CrossRefGoogle Scholar
  24. 24.
    Martínez J (2009) Chem Phys Lett 478:310–322CrossRefGoogle Scholar
  25. 25.
    Martínez JI, Moncada JL, Larenas JM (2010) J Mol Model 16:1825–1832CrossRefGoogle Scholar
  26. 26.
    Fievez T, Sablon N, Ayers PW, De Proft F, Geerlings P (2008) J Chem Theory Comput 4:1065–1072CrossRefGoogle Scholar
  27. 27.
    Ayers PW, De Proft F, Borgoo A, Geerlings P (2007) J Chem Phys 126:224107CrossRefGoogle Scholar
  28. 28.
    Sablon N, De Proft F, Ayers PW, Geerlings P (2007) J Chem Phys 126:224108CrossRefGoogle Scholar
  29. 29.
    Cárdenas C, Ayers PW, Cedillo A (2011) J Chem Phys 134:174103CrossRefGoogle Scholar
  30. 30.
    Melin J, Ayers PW, Ortiz JV (2007) J Phys Chem A 111:10017–10019CrossRefGoogle Scholar
  31. 31.
    Bartolotti LJ, Ayers PW (2005) J Phys Chem A 109:1146–1151CrossRefGoogle Scholar
  32. 32.
    Ayers PW (2006) Phys Chem Chem Phys 8:3387–3390CrossRefGoogle Scholar
  33. 33.
    Murray JS, Brinck T, Politzer P (1991) Int J Quantum Chem 18:91–98CrossRefGoogle Scholar
  34. 34.
    Murray JS, Seminario JM, Politzer P, Sjoberg P (1990) Int J Quantum Chem 38:645–653CrossRefGoogle Scholar
  35. 35.
    Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Can J Chem 68:1440–1443CrossRefGoogle Scholar
  36. 36.
    Schlegel HB (1982) J Comp Chem 3:214–218CrossRefGoogle Scholar
  37. 37.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  38. 38.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  39. 39.
    Becke AD (1993) J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  40. 40.
    Lee CL, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  41. 41.
    Jensen F (2007) Introduction to computational chemistry, 2nd edn. Chap. 5 Basis Sets. Wiley, Chichester, pp 192–252Google Scholar
  42. 42.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222CrossRefGoogle Scholar
  43. 43.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  44. 44.
    Frisch MJ et al (2010) Gaussian 09, Revision B.1. Gaussian, WallingfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Facultad de Ingeniería, Campus República, Sede SantiagoUniversidad Pedro de ValdiviaSantiagoChile

Personalised recommendations