Journal of Molecular Modeling

, Volume 19, Issue 7, pp 2739–2746 | Cite as

Trends in σ-hole strengths and interactions of F3MX molecules (M = C, Si, Ge and X = F, Cl, Br, I)

  • Ashwini Bundhun
  • Ponnadurai Ramasami
  • Jane S. Murray
  • Peter Politzer
Original Paper


It is well-established that many covalently-bonded atoms of Groups IV–VII have directionally-specific regions of positive electrostatic potential (σ-holes) through which they can interact with negative sites. In the case of Group VII, this is called “halogen bonding.” We have studied two series of molecules: the F3MX and, for comparison, the H3MX (M = C, Si and Ge; X = F, Cl, Br and I). Our objective was to determine how the interplay between M and X in each molecule affects the σ-holes of both, and consequently their interactions with the nitrogen lone pair of HCN. We find that the relative electronegativities of M and X are not sufficient to explain their effects upon each other’s σ-holes; consideration of charge capacity/polarizability (and perhaps other factors) also appears to be necessary. However the results do support the description of normal σ-hole interactions as being largely electrostatically-driven.


Halogen bonding Electrostatic potentials F3MX molecules Interaction energies σ-hole interactions 



The facilities at the University of Mauritius are acknowledged.


  1. 1.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296CrossRefGoogle Scholar
  2. 2.
    Brinck T, Murray JS, Politzer P (1992) Int J Quantum Chem Quantum Biol Symp 44(Suppl 19):57–64CrossRefGoogle Scholar
  3. 3.
    Murray JS, Paulsen K, Politzer P (1994) Proc Indian Acad Sci (Chem Sci) 106:267–275Google Scholar
  4. 4.
    Auffinger P, Hays FA, Westhof E, Shing Ho P (2004) Proc Natl Acad Sci 101:16789–16794CrossRefGoogle Scholar
  5. 5.
    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395CrossRefGoogle Scholar
  6. 6.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311CrossRefGoogle Scholar
  7. 7.
    Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757CrossRefGoogle Scholar
  8. 8.
    Stevens E (1979) Mol Phys 37:27–45CrossRefGoogle Scholar
  9. 9.
    Nyberg SC, Wong-Ng W (1979) Proc R Soc London A 367:29–45CrossRefGoogle Scholar
  10. 10.
    Ikuta S (1990) J Mol Struct (THEOCHEM) 205:191–201CrossRefGoogle Scholar
  11. 11.
    Pedireddi VR, Reddy DS, Goud BS, Craig DC, Rae AD, Desiraju GR (1994) J Chem Soc Perkin Trans 2:2353–2360Google Scholar
  12. 12.
    Price SL, Stone AJ, Lucas J, Rowland RS, Thornley AD (1994) J Am Chem Soc 16:4910–4918CrossRefGoogle Scholar
  13. 13.
    Tsirelson VG, Zou PF, Tang T-F, Bader RWF (1995) Acta Crystallogr A51:143–153Google Scholar
  14. 14.
    Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038CrossRefGoogle Scholar
  15. 15.
    Murray JS, Lane P, Politzer P (2008) Int J Quantum Chem 108:2770–2781CrossRefGoogle Scholar
  16. 16.
    Politzer P, Murray JS, Concha MC (2008) J Mol Model 14:659–665CrossRefGoogle Scholar
  17. 17.
    Clark T, Murray JS, Lane P, Politzer P (2008) J Mol Model 14:689–697CrossRefGoogle Scholar
  18. 18.
    Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292CrossRefGoogle Scholar
  19. 19.
    Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729CrossRefGoogle Scholar
  20. 20.
    Politzer P, Murray JS, Lane P, Concha MC (2009) Int J Quantum Chem 109:3773–3780CrossRefGoogle Scholar
  21. 21.
    Murray JS, Concha MC, Politzer P (2011) J Mol Model 17:2151–2157CrossRefGoogle Scholar
  22. 22.
    Miller DB, Sisler HH (1955) J Am Chem Soc 77:4998–5000CrossRefGoogle Scholar
  23. 23.
    Kapecki JA, Baldwin JE (1969) J Am Chem Soc 91:1120–1123CrossRefGoogle Scholar
  24. 24.
    Rosenfield RE Jr, Parthasarathy R, Dunitz JD (1977) J Am Chem Soc 99:4890–4862Google Scholar
  25. 25.
    Guru Row TN, Parthasarthy R (1981) J Am Chem Soc 103:477–479CrossRefGoogle Scholar
  26. 26.
    Goldstein BM, Takusagawa F, Berman HM, Srivastava PC, Robins RK (1983) J Am Chem Soc 105:7416–7422CrossRefGoogle Scholar
  27. 27.
    Burling FT, Goldstein BM (1992) J Am Chem Soc 114:2313–2320CrossRefGoogle Scholar
  28. 28.
    Iwaoka M, Tomoda S (1996) J Am Chem Soc 118:8077–8084CrossRefGoogle Scholar
  29. 29.
    Mitzel NW, Blake AJ, Rankin DWH (1997) J Am Chem Soc 119:4143–4148CrossRefGoogle Scholar
  30. 30.
    Glusker JP (1998) Top Curr Chem 198:1–56CrossRefGoogle Scholar
  31. 31.
    Losehand U, Mitzel NW, Rankin DWH (1999) J Chem Soc Dalton Trans 4291–4297Google Scholar
  32. 32.
    Cozzolino AF, Vargas-Baca I, Mansour S, Mahmoudkhani AH (2005) J Am Chem Soc 127:3184–3190CrossRefGoogle Scholar
  33. 33.
    Murray JS, Riley KE, Politzer P, Clark T (2010) Aust J Chem 63:1598–1607CrossRefGoogle Scholar
  34. 34.
    Politzer P, Murray JS, Lane P (2009) Int J Quantum Chem 107:3046–3052CrossRefGoogle Scholar
  35. 35.
    Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) J Chem Theor Comput 5:155–163CrossRefGoogle Scholar
  36. 36.
    Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Angew Chem Int Ed 39:1782–1786CrossRefGoogle Scholar
  37. 37.
    Shields ZP, Murray JS, Politzer P (2010) Int J Quantum Chem 110:2823–2832CrossRefGoogle Scholar
  38. 38.
    Donald KJ, Wittmack BK, Crigger C (2010) J Phys Chem A 114:7213–7222CrossRefGoogle Scholar
  39. 39.
    Riley KE, Murray JS, Franfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos RM, Politzer P (2011) J Mol Model 17:3309–3318CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al (2009) Gaussian 09, Revision A.l. Gaussian Inc, WallingfordGoogle Scholar
  41. 41.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  42. 42.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167CrossRefGoogle Scholar
  43. 43.
    Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) J Mol Model 18:541–548CrossRefGoogle Scholar
  44. 44.
    Stewart RF (1979) Chem Phys Lett 65:335–342CrossRefGoogle Scholar
  45. 45.
    Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New YorkGoogle Scholar
  46. 46.
    Bader RWF, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979CrossRefGoogle Scholar
  47. 47.
    Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691CrossRefGoogle Scholar
  48. 48.
    Politzer P, Shields ZP-I, Bulat FA, Murray JS (2011) J Chem Theor Comput 7:377–384CrossRefGoogle Scholar
  49. 49.
    Bondi A (1964) J Phys Chem 68:441–451CrossRefGoogle Scholar
  50. 50.
    Riley KE, Murray JS, Franfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos RM, Politzer P (2012) J Mol Model. doi: 10.1007/s00894-012-1428-x
  51. 51.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  52. 52.
    Huheey JE (1965) J Phys Chem 69:3284–3291CrossRefGoogle Scholar
  53. 53.
    Politzer P, Huheey JE, Murray JS, Grodzicki M (1992) J Mol Struct (THEOCHEM) 259:99–120CrossRefGoogle Scholar
  54. 54.
    Lide DR (ed) (2006) Handbook of chemistry and physics, 87th edn. CRC, Boca RatonGoogle Scholar
  55. 55.
    Politzer P (1969) J Am Chem Soc 91:6235–6237CrossRefGoogle Scholar
  56. 56.
    Politzer P (1987) J Chem Phys 86:1072–1073CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ashwini Bundhun
    • 1
  • Ponnadurai Ramasami
    • 1
  • Jane S. Murray
    • 2
  • Peter Politzer
    • 2
  1. 1.Computational Chemistry Group, Department of ChemistryUniversity of MauritiusReduitMauritius
  2. 2.CleveTheoCompClevelandUSA

Personalised recommendations