Journal of Molecular Modeling

, Volume 19, Issue 5, pp 1953–1958 | Cite as

Heavy periodane

  • Jon M. Azpiroz
  • Diego Moreno
  • Alonso Ramirez-Manzanares
  • Jesus M. Ugalde
  • Miguel Angel Mendez-Rojas
  • Gabriel Merino
Original Paper

Abstract

The potential energy surface of the hypothetical NaMgAlSiPSCl system (heavy periodane) is exhaustively analyzed via the gradient embedded genetic algorithm (GEGA) in combination with density functional theory (DFT) computations. The electronegativity differences among the elements in both the second and third rows of the periodic table indicate that low-energy heavy periodane structures are obtained when highly electronegative and electropositive elements are bound together, but the global minimum of the heavy periodane system is completely different to its second-row analog (LiBeBCNOF).

Keywords

Potential energy surface Mindless chemistry Stochastic search Periodane 

Supplementary material

894_2012_1553_MOESM1_ESM.doc (843 kb)
ESM 1(DOC 843 kb)

References

  1. 1.
    Krüger T (2006) Periodane—an unexpectedly stable molecule of unique composition. Int J Quantum Chem 106:1865–1869CrossRefGoogle Scholar
  2. 2.
    Bera PP, PvR S, Schaefer HF (2007) Periodane: a wealth of structural possibilities revealed by the kick procedure. Int J Quantum Chem 107:2220–2223CrossRefGoogle Scholar
  3. 3.
    Alexandrova AN, Boldyrev AI (2005) Search for the Lin0/+1/−1 (n = 5−7) lowest-energy structures using the ab initio gradient embedded genetic algorithm (GEGA). Elucidation of the chemical bonding in the lithium clusters. J Chem Theory Comput 1:566–580Google Scholar
  4. 4.
    Alexandrova AN, Boldyrev AI, Fu YJ, Yang X, Wang XB, Wang LS (2004) Structure of the NaxClx+1 (x = 1−4) clusters via ab initio genetic algorithm and photoelectron spectroscopy. J Chem Phys 121:5709–5720CrossRefGoogle Scholar
  5. 5.
    Hartke B (2011) Global optimization. Wiley Interdiscip Rev Comput Mol Sci 1:879–887CrossRefGoogle Scholar
  6. 6.
    Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680CrossRefGoogle Scholar
  7. 7.
    Pérez JF, Florez E, Hadad CZ, Fuentealba P, Restrepo A (2008) Stochastic search of the quantum conformational space of small lithium and bimetallic lithium-sodium clusters. J Phys Chem A 112:5749–5755CrossRefGoogle Scholar
  8. 8.
    Call ST, Zubarev DY, Boldyrev AI (2007) Global minimum structure searchers via particle swarm optimization. J Comput Chem 28:1177–1186CrossRefGoogle Scholar
  9. 9.
    Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37:106–111Google Scholar
  10. 10.
    Wales DJ, Doye JPK (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms. J Phys Chem A 101:5111–5116Google Scholar
  11. 11.
    Doye JPK, Wales DJ, Miller M (1998) Thermodynamics and the global optimization of Lennard–Jones clusters. J Chem Phys 109:8143–8153Google Scholar
  12. 12.
    Saunder MJ (2004) Stochastic search for isomers on a quantum mechanical surface. J Comput Chem 25:621–626CrossRefGoogle Scholar
  13. 13.
    Berg B, Neuhaus T (1991) Multicanonical algorithms for first order phase transitions. Phys Lett B 267:249–253CrossRefGoogle Scholar
  14. 14.
    Goedecker S (2004) Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J Chem Phys 120:9911–9917CrossRefGoogle Scholar
  15. 15.
    Bopp JC, Alexandrova AN, Elliott BM, Herden T, Johnson MA (2009) Vibrational predissociation spectra of the On, n = 3−10, 12 clusters: even-odd alternation in the core ion. Int J Mass Spectrom 283:94–99CrossRefGoogle Scholar
  16. 16.
    Tiznado W, Perez-Peralta N, Islas R, Toro-Labbe A, Ugalde JM, Merino G (2009) Designing 3-D molecular stars. J Am Chem Soc 131:9426–9431CrossRefGoogle Scholar
  17. 17.
    Wang LM, Huang W, Wang LS, Averkiev BB, Boldyrev AI (2009) Experimental and theoretical investigation of three-dimensional nitrogen-doped aluminum clusters Al8N and Al8N. J Chem Phys 130Google Scholar
  18. 18.
    Alexandrova AN (2010) H(H2O)n clusters: microsolvation of the hydrogen atom via molecular ab initio gradient embedded genetic algorithm (GEGA). J Phys Chem A 114:12591–12599Google Scholar
  19. 19.
    Giri S, Roy DR, Duley S, Chakraborty A, Parthasarathi R, Elango M, Vijayaraj R, Subramanian V, Islas R, Merino G, Chattaraj PK (2010) Bonding, aromaticity, and structure of trigonal dianion metal clusters. J Comput Chem 31:1815–1821Google Scholar
  20. 20.
    Jimenez-Halla JOC, Wu YB, Wang ZX, Islas R, Heine T, Merino G (2010) CAl4Be and CAl3Be2: global minima with a planar pentacoordinate carbon atom. Chem Commun 46:8776–8778Google Scholar
  21. 21.
    Ortega-Moo C, Cervantes J, Mendez-Rojas MA, Pannell KH, Merino G (2010) What is the structure of Si3H5? Chem Phys Lett 490:1–3CrossRefGoogle Scholar
  22. 22.
    Alexandrova AN, Boldyrev AI, Li XA, Sarkas HW, Hendricks JH, Arnold ST, Bowen KH (2011) Lithium cluster anions: photoelectron spectroscopy and ab initio calculations. J Chem Phys 134:044322Google Scholar
  23. 23.
    Huynh MT, Alexandrova AN (2011) Persistent covalency and planarity in the BnAl6−n2− and LiBnAl6−n (n = 0−6) cluster ions. J Phys Chem Lett 2:2046–2051Google Scholar
  24. 24.
    Perez-Peralta N, Contreras M, Tiznado W, Stewart J, Donald KJ, Merino G (2011) Stabilizing carbon–lithium stars. Phys Chem Chem Phys 13:12975–12980Google Scholar
  25. 25.
    Wu YB, Jiang JL, Lu HG, Wang ZX, Perez-Peralta N, Islas R, Contreras M, Merino G, Wu JIC, Schleyer PR (2011) Starlike aluminum–carbon aromatic species. Chem Eur J 17:714–719Google Scholar
  26. 26.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  27. 27.
    Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations—potentials for main group elements Na to Bi. J Chem Phys 82:284–298CrossRefGoogle Scholar
  28. 28.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305Google Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian, Inc., WallingfordGoogle Scholar
  30. 30.
    Varma R, Ramaprasad KR, Nelson JF (1975) Microwave-spectrum, barrier to hindered internal-rotation, molecular-structure, and electric dipole-moment of silyl phosphine. J Chem Phys 63:915–918CrossRefGoogle Scholar
  31. 31.
    Guha S, Francisco JS (2007) An ab initio study of the structures, vibrational spectra, and energetics of A1SHx (x = −1, 0, +1). Astrophys J 671:2159–2163Google Scholar
  32. 32.
    Islas R, Heine T, Merino G (2012) The induced magnetic field. Acc Chem Res 45:215–228CrossRefGoogle Scholar
  33. 33.
    Merino G, Heine T, Seifert G (2004) The induced magnetic field in cyclic molecules. Chem Eur J 10:4367–4371CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jon M. Azpiroz
    • 1
  • Diego Moreno
    • 2
  • Alonso Ramirez-Manzanares
    • 3
  • Jesus M. Ugalde
    • 1
  • Miguel Angel Mendez-Rojas
    • 4
  • Gabriel Merino
    • 5
  1. 1.Kimika FakultateaEuskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC)DonostiaSpain
  2. 2.Departamento de QuímicaUniversidad de GuanajuatoGuanajuatoMexico
  3. 3.Departamento de MatemáticasUniversidad de GuanajuatoGuanajuatoMexico
  4. 4.Departamento de Ciencias Químico-BiológicasUniversidad de las Américas PueblaPueblaMexico
  5. 5.Departamento de Física AplicadaCentro de Investigación y de Estudios AvanzadosMéridaMexico

Personalised recommendations