Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 1, pp 329–336 | Cite as

Ab initio study of weakly bound halogen complexes: RX⋯PH3

  • Herbert C. Georg
  • Eudes E. Fileti
  • Thaciana Malaspina
Original Paper

Abstract

Ab initio calculations were employed to study the role of ipso carbon hybridization in halogenated compounds RX (R = methyl, phenyl, acetyl, H and X = F, Cl, Br and I) and its interaction with a phosphorus atom, as occurs in the halogen bonded complex type RX⋯PH3. The analysis was performed using ab initio MP2, MP4 and CCSD(T) methods. Systematic energy analysis found that the interaction energies are in the range −4.14 to −11.92 kJ mol−1 (at MP2 level without ZPE correction). Effects of electronic correlation levels were evaluated at MP4 and CCSD(T) levels and a reduction of up to 27 % in interaction energy obtained in MP2 was observed. Analysis of the electrostatic maps confirms that the PhCl⋯PH3 and all MeX⋯PH3 complexes are unstable. NBO analysis suggested that the charge transfer between the moieties is bigger when using iodine than bromine and chlorine. The electrical properties of these complexes (dipole and polarizability) were determined and the most important observed aspect was the systematic increase at the dipole polarizability, given by the interaction polarizability. This increase is in the range of 0.7–6.7 u.a. (about 3–7 %).

Keywords

Ab initio calculation Halogen bonded complex Molecular property Interaction energy 

Notes

Acknowledgments

This work has been partially supported by Conselho Nacional de Pesquisa (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

References

  1. 1.
    Nguyen HL, Horton PN, Hursthouse MB, Legon AC, Bruce DW (2004) Halogen bonding: a new interaction for liquid crystal formation. J Am Chem Soc 126:16–17CrossRefGoogle Scholar
  2. 2.
    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395CrossRefGoogle Scholar
  3. 3.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311CrossRefGoogle Scholar
  4. 4.
    Metrangolo P, Resnati G (2008) Halogen bonding: Fundamentals and applications. Structure and bonding. Springer, New YorkGoogle Scholar
  5. 5.
    Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757CrossRefGoogle Scholar
  6. 6.
    Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12:7736–7747CrossRefGoogle Scholar
  7. 7.
    Aakeroy CB, Schultheiss NC, Rajbanshi A, Desper J, Moore C (2009) Supramolecular synthesis based on a combination of hydrogen and halogen bonds. Cryst Growth Des 9:432–441CrossRefGoogle Scholar
  8. 8.
    Caronna T, Liantonio R, Logothetis TA, Metrangolo P, Pilati T, Resnati G (2004) Halogen bonding and pi…pi stacking control reactivity in the solid state. J Am Chem Soc 126:4500–4501CrossRefGoogle Scholar
  9. 9.
    Voth AR, Hays FA, Ho PS (2007) Directing macromolecular conformation through halogen bonds. Proc Natl Acad Sci USA 104:6188–6193CrossRefGoogle Scholar
  10. 10.
    Wang F, Ma N, Chen Q, Wang W, Wan L (2007) Halogen bonding as a new driving force for layer-by-layer assembly. Langmuir 23:9540–9542CrossRefGoogle Scholar
  11. 11.
    Metrangolo F, Murray JS, Pilati T, Politzer P, Resnati G, Terraneo G (2011) The fluorine atom as a halogen bond donor, viz. A positive site. Cryst Eng Commun 13:6593–6596Google Scholar
  12. 12.
    Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneo G (2011) Fluorine-centered halogen bonding: a factor in recognition phenomena and reactivity. Cryst Growth Des 11:4238–4246CrossRefGoogle Scholar
  13. 13.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296CrossRefGoogle Scholar
  14. 14.
    Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. J Mol Model 13:643–650CrossRefGoogle Scholar
  15. 15.
    Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548CrossRefGoogle Scholar
  16. 16.
    Awwadi FF, Willett RD, Peterson KA, Twamley B (2007) The nature of halogen•••halide synthons: theoretical and crystallographic studies. J Phys Chem A 111:2319–2328CrossRefGoogle Scholar
  17. 17.
    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J Chem Phys 119:11113–11123CrossRefGoogle Scholar
  18. 18.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566CrossRefGoogle Scholar
  19. 19.
    Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218CrossRefGoogle Scholar
  20. 20.
    Frish MJ et al (2003) Gaussian 03. Gaussian Inc, Wallingford CTGoogle Scholar
  21. 21.
    Valdes H, Sordo JA (2003) A theoretical analysis of the weakly bound complexes H3P…XY (XY = HBr, HCl, Br2, BrCl), H3N…BrCl. Chem Phys Lett 371:386–393CrossRefGoogle Scholar
  22. 22.
    Legon AC, Thumwood JMA, Waclawika ER, Willoughbyb LC (2000) The hydrogen-bonded complex investigated by a H3P…HCl combination of rotational spectroscopy and ab initio SCF calculations. Phys Chem Chem Phys 2:4918–4924CrossRefGoogle Scholar
  23. 23.
    Hinchliffe A (1985) Ab initio study of the hydrogen-bonded complexes NH3⋯HBr, PH3⋯HBr, AsH3⋯HF, AsH3⋯HCl and AsH3⋯HBr. J Mol Struct (THEOCHEM) 22:201–205CrossRefGoogle Scholar
  24. 24.
    Auffinger P, Hays FA, Westhof E, Shing HP (2004) Halogen bonding in biological molecules. Proc Natl Acad Sci USA 101:16789–16794CrossRefGoogle Scholar
  25. 25.
    Bader RFW, Carroll TMT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109:7968–7979CrossRefGoogle Scholar
  26. 26.
    Lu YX, Zou JW, Wang YH, Jiang YJ, Yu QS (2007) Ab Initio Investigation of the complexes between Bromobenzene and several electron donors: some insights into the magnitude and nature of halogen bonding interactions. J Phys Chem A 111:10781–10788CrossRefGoogle Scholar
  27. 27.
    Lu YX, Zou JW, Wang YH, Yu QS (2006) Ab initio and atoms in molecules analyses of halogen bonding with a continuum of strength. J Mol Struct (THEOCHEM) 776:83–87CrossRefGoogle Scholar
  28. 28.
    Desiraju GR (2002) Hydrogen bridges in crystal engineering: interactions without borders. Acc Chem Res 35:565–573CrossRefGoogle Scholar
  29. 29.
    Lide DR (ed) (2005) CRC handbook of chemistry and physics, 86th edn. CRC, New YorkGoogle Scholar
  30. 30.
    Fileti EE, Rivelino R, Canuto S (2003) Rayleigh light scattering of hydrogen bonded clusters investigated by means of ab initio calculations. J Phys B Atomic Mol Opt Phys 36(2):399–408CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Herbert C. Georg
    • 1
  • Eudes E. Fileti
    • 2
  • Thaciana Malaspina
    • 2
  1. 1.Instituto de FísicaUniversidade Federal de GoiásGoiâniaBrazil
  2. 2.Instituto de Ciência e TecnologiaUniversidade Federal de São PauloSão José dos CamposBrazil

Personalised recommendations