Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 1, pp 321–328 | Cite as

A density functional theory analysis for the adsorption of the amine group on graphene and boron nitride nanosheets

  • Ernesto Chigo Anota
  • Alejandro Rodríguez Juárez
  • Miguel Castro
  • Heriberto Hernández Cocoletzi
Original Paper

Abstract

In this paper first principles total energy calculations to study the adsorption of amine group (NH2) on graphene (G) and boron nitride (hBN) nanosheets are developed; the density functional theory, within the local density approximation and Perdew-Wang functional was employed. The sheets were modeled with a sufficiently proved CnHm-like cluster with armchair edge. The optimized geometry was obtained following the minimum energy criterion, searching on four positions for each nanosheet: perpendicular to the carbon atom, on the hexagon, inside the hexagon and on the bridge C–C, for the G-amine interaction; and, perpendicular to the B, perpendicular to the N, on the hexagon, and inside the hexagon, for the hBN-amine interaction. A physisorption, with amine parallel to the C–C–C bond with a distance graphene-amine of 2.56 Å, was found. For the case of BN a B–N bond, with bond length equal to 1.56 Å, was found; the amine lies perpendicular to the nanosheet. When the graphene is doped with B and Al atoms a chemisorption with B–N (1.57 Å) and Al–N (1.78 Å) bonds is observed; the bond angle in the amine group is also incremented, 5.5° and 8.1°, respectively. In the presence of point defects (monovacancies) of B in the hBN-amine and C in the G-amine, there exists chemisorption, increasing the reactivity of the sheets.

Keywords

Amine Boron nitride CnHm clusters DFT theory Graphene 

Notes

Acknowledgments

This work was partially supported by projects: Vicerrectoria de Investigación y Estudios de Posgrado-Benemérita Universidad Autónoma de Puebla (CHAE-ING12-G), Cuerpo Académico Ingeniería en Materiales (BUAP-CA-177) and Consejo Nacional de Ciencia y Tecnología-México (No. 83982).

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669CrossRefGoogle Scholar
  2. 2.
    Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Proc Natl Acad Sci USA 102:10451–10453CrossRefGoogle Scholar
  3. 3.
    Lin YM, Valdes Garcia A, Han SJ, Farmer DB, Meric I, Sun Y, Wu Y, Dimitrakopoulos C, Grill A, Avouris P, Jenkins KA (2010) Science 332:1294–1297CrossRefGoogle Scholar
  4. 4.
    Pumera M (2011) Mater Today 14:308–315CrossRefGoogle Scholar
  5. 5.
    Sofo JO, Chaudhari AS, Barber GD (2007) Phys Rev B 75:153401–153404CrossRefGoogle Scholar
  6. 6.
    Wang WL, Kaxiras E (2010) New J Phys 12(125012):1–7Google Scholar
  7. 7.
    Nair RR, Ren WC, Jalil R, Diaz I, Kravets VG, Britnell L, Blake P, Schedin F, Mayorov AS, Yuan S, Katsnelson MI, Cheng HM, Strupinski W, Bulsheva LG, Okotrub AV, Grigoreva IV, Grigorenko AN, Novoselov KS, Geim AK (2010) Small 6(24):2877–2884CrossRefGoogle Scholar
  8. 8.
    Wang Y (2010) Phys Status Solidi RRL 4:34–36CrossRefGoogle Scholar
  9. 9.
    Yaya A, Ewels CP, Suarez-Martinez I, Wagner PH, Lefrant S, Okotrub A, Bulusheva L, Briddon PR (2011) Phys Rev B 83(045411):1–5Google Scholar
  10. 10.
    Lew Yan Voon LC, Sandberg E, Aga RS, Farajian AA (2010) App Phys Lett 97(163114):1–3Google Scholar
  11. 11.
    Valentini L, Cardinali M, Kenny J M, Prato M, Monticelli O (2011) arXiv:1112.3459Google Scholar
  12. 12.
    Li B, Zhou L, Wu D, Peng H, Yan K, Zhou Y, Liu Z (2011) ACS Nano 5:5957–5961CrossRefGoogle Scholar
  13. 13.
    Ikuno T, Sainsbury T, Okawa D, Frechet JMJ, Zettl A (2007) Solid State Commun 142:643–646CrossRefGoogle Scholar
  14. 14.
    Wu J, Yin L (2011) ACS Appl Mater Interfaces 3:4354–4362CrossRefGoogle Scholar
  15. 15.
    Gao Z, Zhi CH, Bando Y, Golberg D, Serizawa T (2011) ACS Appl Mater Interfaces 3:627–632CrossRefGoogle Scholar
  16. 16.
    Zhi CH, Bando Y, Tang CH, Kuwahara H, Golberg D (2009) Adv Mater 21:2889–2893CrossRefGoogle Scholar
  17. 17.
    Hernández Rosas JJ, Ramirez Gutierrez RE, Escobedo Morales A, Chigo Anota E (2011) J Mol Model 17(5):1133–1139CrossRefGoogle Scholar
  18. 18.
    Rangel NL, Seminario GM (2008) J Phys Chem A 112:13699–13705CrossRefGoogle Scholar
  19. 19.
    Chigo Anota E, Salazar Villanueva M, Hernández Cocoletzi H (2011) J Nanosci Nanotechnol 11(6):5515–5518CrossRefGoogle Scholar
  20. 20.
    Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc, USA, p 70Google Scholar
  21. 21.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  22. 22.
    Delley B (1990) J Chem Phys 92:508–517CrossRefGoogle Scholar
  23. 23.
    Chigo Anota E, Ramírez Gutierrez RE, Escobedo Morales A, Hernandez Cocoletzi G (2012) J Mol Model 18(5):2175–2184CrossRefGoogle Scholar
  24. 24.
    Hirshfeld FL (1977) Theor Chim Acta B 44:129–138CrossRefGoogle Scholar
  25. 25.
    Aguilar GG (1985) Adsorción y catálisis, ed. Universidad Autónoma de Puebla, México, pp 1–20Google Scholar
  26. 26.
    Chigo Anota E, Hernández Cocoletzi H, Rubio Rosas E (2011) Eur Phys J D 63:271–273CrossRefGoogle Scholar
  27. 27.
    Cao F, Ren W, Ji Y, Zhao C (2009) Nanotechnology 20(145703):1–7Google Scholar
  28. 28.
    Rodríguez Juárez A, Chigo Anota E, Flores Riveros A, Hernández Cocoletzi H (2012) DFT investigation of the adsorption of chitosan on BN nanotubes. J Mat Sci Eng: A (submitted)Google Scholar
  29. 29.
    Chigo Anota E, Salazar Villanueva M (2009) Sup y Vac 22(2):23–28Google Scholar
  30. 30.
    Jaegger TD, van Heinsbergen D, Klippenstein SJ, von Helden G, Meijer G, Duncan MA (2004) J Am Chem Soc 126:10981–10991CrossRefGoogle Scholar
  31. 31.
    Wu T, Shen H, Sun L, Cheng B, Liu B, Shen J (2012) New J Chem 36:1385–1391CrossRefGoogle Scholar
  32. 32.
    Zhao W, Höfert O, Gotterbarm K, Zhu JF, Papp C, Steinrück HP (2012) J Phys Chem C 116(8):5062–5066CrossRefGoogle Scholar
  33. 33.
    Long D, Li W, Ling L, Miyawaki J, Mochida I, Yoon SH (2010) Langmuir 26(20):16096–16102CrossRefGoogle Scholar
  34. 34.
    Usachov D, Vilkov O, Grüneis A, Haberer D, Fedorov A, Adamchuk VK, Preobrajenski AB, Dudin P, Barinov A, Oehzelt M, Laubschat C, Vyalikh DV (2011) Nano Lett 11(12):5401–5407CrossRefGoogle Scholar
  35. 35.
    Chigo Anota E (2009) Sup y Vac 22(1):19–23Google Scholar
  36. 36.
    Chi M, Zhao YP (2009) Comput Mater Sci 46:1085–1090CrossRefGoogle Scholar
  37. 37.
    Chigo Anota E, Salazar Villanueva M, Hernández Cocoletzi H (2010) Phys Status Solidi C 7:2252–2254CrossRefGoogle Scholar
  38. 38.
    Gass MH, Bangert U, Bleloch AL, Wang P, Nair RR, Geim AK (2008) Nat Nanotechnol 3:676–681CrossRefGoogle Scholar
  39. 39.
    Meyer JC, Kisielowski C, Erni R, Rossell MD, Crommie MF, Zettl A (2008) Nano Lett 8(11):3582–3586CrossRefGoogle Scholar
  40. 40.
    Ugeda MM, Brihuega I, Guinea F, Gómez Rodríguez JM (2010) Phys Rev Lett 104(9)(096804):1–4Google Scholar
  41. 41.
    Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Nat Chem 2:581–587CrossRefGoogle Scholar
  42. 42.
    Banhart F, Kotakoski J, Krasheninnikov AV (2011) ACS Nano 5:26–41CrossRefGoogle Scholar
  43. 43.
    Kotakoski J, Krasheninnikov AV (2011) Comput Nanosci 11:334–376CrossRefGoogle Scholar
  44. 44.
    Alem N, Erni R, Kisielowski C, Rossell MD, Gannett W, Zettl A (2009) Phys Rev B 80(15)(155425):1–7Google Scholar
  45. 45.
    Lin Y, Williams TF, Cao W, Elsayed-Ali HE, Connell JW (2010) J Phys Chem C 114(41):17434–17439CrossRefGoogle Scholar
  46. 46.
    Chigo Anota E, Escobedo Morales A, Hernández Rodríguez LD, Juárez Rodríguez A (2012) Observation of the chitosan adsorption on boron nitride nanosheets using the density functional theory. J Mat Sci Eng: A (submitted)Google Scholar
  47. 47.
    Van Dommels S, de Jong KP, Bitter JH (2006) Chem Commun 4859–4861Google Scholar
  48. 48.
    Long J, Xie X, Xu J, Gu Q, Chen L, Wang X (2012) ACS Catal 2:622–631CrossRefGoogle Scholar
  49. 49.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE et al. (2009) Gaussian09, Revision C.01-SMP. Gaussian Inc, PittsburghGoogle Scholar
  50. 50.
    Portmann S (2002) Molekel version 4.3.win32Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ernesto Chigo Anota
    • 1
  • Alejandro Rodríguez Juárez
    • 2
  • Miguel Castro
    • 3
  • Heriberto Hernández Cocoletzi
    • 1
  1. 1.Facultad de Ingeniería QuímicaBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.‘Instituto de Física ‘Luís Rivera Terrazas’Benemérita Universidad Autónoma de PueblaPueblaMexico
  3. 3.Departamento de Física y Química Teórica, DEPg-Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations