Journal of Molecular Modeling

, Volume 18, Issue 9, pp 4349–4354 | Cite as

Solvent effect on cation–π interactions with Al3+

  • Julen Larrucea
Original Paper


Cation–π interactions are known to be one of the strongest noncovalent forces in the gas phase, but they rarely occur in a fully solvated environment. The present work used two different ab initio molecular dynamics-based approaches to describe the correlation between the strength of the cation–π interactions and the number of water molecules surrounding the cation. Five different complexes between an aluminum cation and different molecules containing aromatic rings were studied, and the degree of hydration of each complex was varied. Results indicated that cation–π interactions vanish when the aluminum cation is surrounded by more than three water molecules. The results also highlighted the influence of –OH ligands on the interaction strength.

Fig. 1

Visualization of the cation–π interaction between the aromatic ring in phenylalanine and the Al3+ cation, together with the corresponding Wannier function centers


Cation–pi Aluminum Aromatic amino acid CPMD Blue moon 



This research was mostly funded by Euskal Herriko Unibertsitatea (the University of the Basque Country), Gipuzkoako Foru Aldundia (the Provincial Government of Gipuzkoa), and Eusko Jaurlaritza (the Basque Government).

The calculations were performed using the Mare Nostrum supercomputer (PowerPC 970MP) at the Barcelona Supercomputing Center (Centro Nacional de Supercomputación), Juropa (Intel Xeon 5570) at the Jülich Supercomputing Center, and Arina (Itanium II) at the SGI/IZO-SGIker at the University of the Basque Country UPV/EHU.

I wish to acknowledge Prof. Jesus M. Ugalde and many people in NSC Jyväskylä, such as Dr. Jaakko Akola, Prof. Hannu Häkkinen, Prof. Robert van Leuwen, and Oleg O. Kit, for discussions and support.


  1. 1.
    Zatta P, Lucchini R, van Rensburg SJ, Taylor A (2003) Brain Res Bull 62:15–28CrossRefGoogle Scholar
  2. 2.
    Kawahara M (2005) J Alzheim Dis 8:171–181Google Scholar
  3. 3.
    Dougherty DA (1996) Science 271:163–168CrossRefGoogle Scholar
  4. 4.
    Ma JC, Dougherty DA (1997) Chem Rev 97:1303–1324CrossRefGoogle Scholar
  5. 5.
    Costanzo F, Valle RGDJ (2008) Phys Chem 112:12783–12789Google Scholar
  6. 6.
    Larrucea J (2009) Computational study of the effect of aluminum cation on aromatic amino acids (Ph.D. thesis). Euskal Herriko Unibertsitatea UPV/EHU, DonostiaGoogle Scholar
  7. 7.
    Larrucea J, Rezabal E, Marino T, Russo N, Ugalde JM (2010) J Phys Chem B 114:9017–9022CrossRefGoogle Scholar
  8. 8.
    CPMD Consortium (2001) CPMD v3.11.1, C. (revision A11). IBM Corporation/Max-Planck Institut, Stuttgart.
  9. 9.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  10. 10.
    Vanderbilt D (1990) Phys Rev B 41:7892–7895CrossRefGoogle Scholar
  11. 11.
    Laasonen K, Car R, Lee C, Vanderbilt D (1991) Phys Rev B 43:6796–6799CrossRefGoogle Scholar
  12. 12.
    Laasonen K, Pasquarello A, Car R, Lee C, Vanderbilt D (1993) Phys Rev B 47:10142–10153CrossRefGoogle Scholar
  13. 13.
    Car R, Parrinello M (1985) Phys Rev Lett 55:2471–2474CrossRefGoogle Scholar
  14. 14.
    Nosé SJ (1984) Chem Phys 81:511Google Scholar
  15. 15.
    Hoover WG (1985) Phys Rev A 31:1695CrossRefGoogle Scholar
  16. 16.
    Evans DJ, Holian BLJ (1985) Chem Phys 83:4069Google Scholar
  17. 17.
    Sprik M, Ciccotti GJ (1998) Chem Phys 109:7737–7744Google Scholar
  18. 18.
    Ciccotti G, Kaprai R, Vanden-Eijnden E (2006) Chem Phys Chem 6:1809CrossRefGoogle Scholar
  19. 19.
    Dunbar RC, Klippenstein SJ, Hrusak J, Stoeckigt D, Schwarz H (1996) J Am Chem Soc 118:5277Google Scholar
  20. 20.
    Larrucea J (2011) Phys Scr 84:045305CrossRefGoogle Scholar
  21. 21.
    Suipizi M, Carloni PJ (2000) Phys Chem B 104:10087CrossRefGoogle Scholar
  22. 22.
    Swaddle TW, Rosenqvist J, Yu P, Bylaska E, Philips BL, Casey WH (2005) Science 308:1450–1453CrossRefGoogle Scholar
  23. 23.
    Takashi Ikeda MH, Kimura TJ (2006) Chem Phys 124:074503–1Google Scholar
  24. 24.
    Bock CW, Markham GD, Katz AK, Glusker JP (2006) Theor Chem Acc 115:100–112Google Scholar
  25. 25.
    Sillanpää A, Päivärinta JT, Hotokka MJ, Rosenholm JB, Laasonen KJ (2001) Phys Chem 105:10111–10122CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Kimika Fakultatea, Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC)DonostiaSpain
  2. 2.Department of Physics, Nanoscience CenterUniversity of JyväskyläJyväskyläFinland

Personalised recommendations