Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 11, pp 4651–4659 | Cite as

Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds

  • Kevin E. RileyEmail author
  • Jane S. Murray
  • Jindřich Fanfrlík
  • Jan Řezáč
  • Ricardo J. Solá
  • Monica C. Concha
  • Felix M. Ramos
  • Peter Politzer
Original Paper

Abstract

In a previous study we investigated the effects of aromatic fluorine substitution on the strengths of the halogen bonds in halobenzene…acetone complexes (halo = chloro, bromo, and iodo). In this work, we have examined the origins of these halogen bonds (excluding the iodo systems), more specifically, the relative contributions of electrostatic and dispersion forces in these interactions and how these contributions change when halogen σ-holes are modified. These studies have been carried out using density functional symmetry adapted perturbation theory (DFT-SAPT) and through analyses of intermolecular correlation energies and molecular electrostatic potentials. It is found that electrostatic and dispersion contributions to attraction in halogen bonds vary from complex to complex, but are generally quite similar in magnitude. Not surprisingly, increasing the size and positive nature of a halogen’s σ-hole dramatically enhances the strength of the electrostatic component of the halogen bonding interaction. Not so obviously, halogens with larger, more positive σ-holes tend to exhibit weaker dispersion interactions, which is attributable to the lower local polarizabilities of the larger σ-holes.

Figure

In this work we investigate the roles played by electrostatic and dispersion forces in stabilizing halogen bonding interactions.

Keywords

Dispersion Electrostatics Halogen bonding Noncovalent interactions 

Notes

Acknowledgments

This work was a part of research Project No. Z40550506 of the Institute of Organic Chemistry and Biochemistry, ASCR and was supported by the Operational Program Research and Development for Innovations - European Regional Development Fund (Project CZ.1.05/2.1.00/03.0058 of the MEYS of the CR). The support of Praemium Academiae, ASCR, awarded to P.H. in 2007 is acknowledged. This work was also supported by the Czech Science Foundation (P208/12/G016).

Supplementary material

894_2012_1428_MOESM1_ESM.doc (858 kb)
ESM 1 (DOC 858 kb)

References

  1. 1.
    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395CrossRefGoogle Scholar
  2. 2.
    Metrangolo P, Resnati G (2008) Halogen bonding: fundamentals and applications. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Nat Acad Sci USA 101:16789–16794CrossRefGoogle Scholar
  4. 4.
    Murray JS, Riley KE, Politzer P, Clark T (2010) Aust J Chem 63:1598–1607CrossRefGoogle Scholar
  5. 5.
    Riley KE, Hobza P (2011) Cryst Growth Des 11:4272–4278. doi: 10.1021/Cg200882f CrossRefGoogle Scholar
  6. 6.
    Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, Gsell B, Thoma R, Diez J, Benz J, Plancher JM, Hartmann G, Banner DW, Haap W, Diederich F (2011) Angew Chem Int Ed 50:314–318. doi: 10.1002/Anie.201006781 CrossRefGoogle Scholar
  7. 7.
    Riley KE, Murray JS, Concha MC, Politzer P, Hobza P (2009) J Chem Theor Comput 5:155–163CrossRefGoogle Scholar
  8. 8.
    Riley KE, Murray JS, Fanfrlik J, Rezac J, Sola RJ, Concha MC, Ramos FM, Politzer P (2011) J Mol Model 17:3309–3318CrossRefGoogle Scholar
  9. 9.
    Politzer P, Murray JS (2009) In: Leszczynski J, Shukla M (eds) Practical Aspects of Computational Chemistry. Springer, Heidelberg, pp 149–163CrossRefGoogle Scholar
  10. 10.
    Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757CrossRefGoogle Scholar
  11. 11.
    Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneo G (2011) Crystal Growth Design 11:4238–4246. doi: 10.1021/Cg200888n CrossRefGoogle Scholar
  12. 12.
    Ikuta S (1990) J Mol Struct (THEOCHEM) 205:191–201CrossRefGoogle Scholar
  13. 13.
    Nyburg SC, Wong-Ng W (1979) Proc Royal Soc London A 367:29–45CrossRefGoogle Scholar
  14. 14.
    Price SL, Stone AJ, Lucas J, Rowland RS, Thornley AE (1994) J Am Chem Soc 116:4910–4918CrossRefGoogle Scholar
  15. 15.
    Stevens ED (1979) Mol Phys 37:27–45CrossRefGoogle Scholar
  16. 16.
    Tsirelson VG, Zou PF, Tang TH, Bader RFW (1995) Acta Cryst A51:143–153Google Scholar
  17. 17.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296CrossRefGoogle Scholar
  18. 18.
    Hennemann M, Murray JS, Politzer P, Riley KE, Clark T (2012) J Mol Model doi:  10.1007/s00894-011-1263-5
  19. 19.
    Shields Z, Murray JS, Politzer P (2010) Int J Quantum Chem 110:2823–2832CrossRefGoogle Scholar
  20. 20.
    Riley KE, Hobza P (2008) J Chem Theor Comput 4:232–242. doi: 10.1021/Ct700216w CrossRefGoogle Scholar
  21. 21.
    Chalasinski G, Szczesniak MM (2000) Chem Rev 100:4227–4252. doi: 10.1021/Cr990048z CrossRefGoogle Scholar
  22. 22.
    Hobza P, Zahradnik R, Muller-Dethlefs K (2006) Coll Czech Chem Commun 71:443–531CrossRefGoogle Scholar
  23. 23.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887–1930CrossRefGoogle Scholar
  24. 24.
    Chen J, Martinez TJ (2007) Chem Phys Lett 438:315–320CrossRefGoogle Scholar
  25. 25.
    Sokalski WA, Roszak SM (1991) J Mol Struct (THEOCHEM) 80:387–400CrossRefGoogle Scholar
  26. 26.
    Ma YG, Politzer P (2004) J Chem Phys 120:3152–3157. doi: 10.1063/1.1640991 CrossRefGoogle Scholar
  27. 27.
    Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325–340CrossRefGoogle Scholar
  28. 28.
    Cramer CJ (2002) Essentials of computational chemistry. Wiley, ChichesterGoogle Scholar
  29. 29.
    Hobza P, Zahradnik R (1992) Int J Quantum Chem 42:581–590CrossRefGoogle Scholar
  30. 30.
    Jaffe RL, Smith GD (1996) J Chem Phys 105:2780–2788CrossRefGoogle Scholar
  31. 31.
    Shishkin OV (2008) Chem Phys Lett 458:96–100. doi: 10.1016/J.Cplett.2008.04.106 CrossRefGoogle Scholar
  32. 32.
    Shishkin OV, Zubatyuk RI, Dyakonenko VV, Lepetit C, Chauvin R (2011) Phys Chem Chem Phys 13:6837–6848. doi: 10.1039/C0cp02666b CrossRefGoogle Scholar
  33. 33.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  34. 34.
    Hesselmann A, Jansen G (2003) Phys Chem Chem Phys 5:5010–5014. doi: 10.1039/B310529f CrossRefGoogle Scholar
  35. 35.
    Hesselmann A, Jansen G, Schutz M (2005) J Chem Phys 122:014103CrossRefGoogle Scholar
  36. 36.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  37. 37.
    Dunning TH (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  38. 38.
    Tekin A, Jansen G (2007) Phys Chem Chem Phys 9:1680–1687CrossRefGoogle Scholar
  39. 39.
    Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New YorkCrossRefGoogle Scholar
  40. 40.
    Stewart RF (1979) Chem Phys Lett 65:335–342CrossRefGoogle Scholar
  41. 41.
    Politzer P, Murray JS (2002) Theor Chem Acc 108:134–142CrossRefGoogle Scholar
  42. 42.
    Ayers PW (2007) Chem Phys Lett 438:148–152. doi: 10.1016/J.Cplett.2007.02.070 CrossRefGoogle Scholar
  43. 43.
    Politzer P (2004) Theor Chem Acc 111:395–399. doi: 10.1007/S00214-003-0533-4 CrossRefGoogle Scholar
  44. 44.
    Murray JS, Politzer P (2011) WIREs Comput Mol Sci 1:153–163. doi: 10.1002/Wcms.19 CrossRefGoogle Scholar
  45. 45.
    Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691CrossRefGoogle Scholar
  46. 46.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979CrossRefGoogle Scholar
  47. 47.
    Murray-Rust P, Motherwell WDS (1979) J Am Chem Soc 101:4374–4376CrossRefGoogle Scholar
  48. 48.
    Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP (1983) J Am Chem Soc 105:3206–3214CrossRefGoogle Scholar
  49. 49.
    Politzer P, Murray JS, Concha MC (2008) J Mol Model 14:659–665. doi: 10.1007/S00894-008-0280-5 CrossRefGoogle Scholar
  50. 50.
    Wang FF, Hou JH, Li ZR, Wu D, Li Y, Lu ZY, Cao WL (2007) J Chem Phys 126:144301. doi: Artn144301Doi10.1063/1.2715559 CrossRefGoogle Scholar
  51. 51.
    Bondi A (1964) J Phys Chem 68:441–451CrossRefGoogle Scholar
  52. 52.
    Jin P, Murray JS, Politzer P (2004) Int J Quantum Chem 96:394–401. doi: 10.1002/Qua.10717 CrossRefGoogle Scholar
  53. 53.
    Politzer P, Murray JS, Bulat FA (2010) J Mol Model 16:1731–1742. doi: 10.1007/S00894-010-0709-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Kevin E. Riley
    • 1
    Email author
  • Jane S. Murray
    • 3
  • Jindřich Fanfrlík
    • 1
  • Jan Řezáč
    • 1
  • Ricardo J. Solá
    • 2
  • Monica C. Concha
    • 3
  • Felix M. Ramos
    • 2
  • Peter Politzer
    • 3
  1. 1.Institute of Organic and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular SystemsPrague 6Czech Republic
  2. 2.Department of ChemistryUniversity of Puerto RicoSan JuanPuerto Rico
  3. 3.CleveTheoCompClevelandUSA

Personalised recommendations