Advertisement

Journal of Molecular Modeling

, Volume 18, Issue 9, pp 4355–4366 | Cite as

Molecular mechanism of the enhanced virulence of 2009 pandemic Influenza A (H1N1) virus from D222G mutation in the hemagglutinin: a molecular modeling study

  • Dabo Pan
  • Weihua Xue
  • Xiaoting Wang
  • Jingjing Guo
  • Huanxiang LiuEmail author
  • Xiaojun YaoEmail author
Original Paper

Abstract

D222G mutation of the hemagglutinin (HA) is of special interest because of its close association with the enhanced virulence of 2009 pandemic influenza A (H1N1) virus through the increased binding affinity to α2,3-linked sialylated glycan receptors. However, there is still a lack of detailed understanding about the molecular mechanism of this enhanced virulence. Here, molecular dynamics simulation and binding free energy calculation were performed to explore the altered glycan receptor binding mechanism of HA upon the D222G mutation by studying the interaction of one α2,3-linked sialylglycan (sequence: SIA-GAL-NAG) with the wild type and D222G mutated HA. The binding free energy calculation based on the molecular mechanics generalized Born surface area (MM-GBSA) method indicates that the D222G mutated HA has a much stronger binding affinity with the studied α2,3-linked glycan than the wild type. This is consistent with the experimental result. The increased binding free energy of D222G mutant mainly comes from the increased energy contribution of Gln223. The structural analysis proves that the altered electrostatic potential of receptor binding domain (RBD) and the increased flexibility of 220-loop are the essential reasons leading to the increased affinity of HA to α2,3-linked sialic acid glycans. The obtained results of this study have allowed a deeper understanding of the receptor recognition mechanism and the pathogenicity of influenza virus, which will be valuable to the structure-based inhibitors design targeting influenza virus entry process.

Figure

The altered α-2,3 linked glycan binding to hemagglutinin upon D222G mutation

Keywords

2009 pandemic influenza A (H1N1) D222G mutation Glycan receptor binding Hemagglutinin (HA) Molecular dynamics simulation Binding free energy calculation 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos: 20905033 and 21103075). The authors also would like to thank the Super-computing Center of Gansu Province for providing the computing resources.

Supplementary material

894_2012_1423_MOESM1_ESM.doc (102 kb)
ESM1 (DOC 102 kb)

References

  1. 1.
    Perez-Padilla R, de la Rosa-Zamboni D, Ponce de Leon S, Hernandez M, Quinones-Falconi F, Bautista E, Ramirez-Venegas A, Rojas-Serrano J, Ormsby CE, Corrales A, Higuera A, Mondragon E, Cordova-Villalobos JA (2009) Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico. N Engl J Med 361(7):680–689CrossRefGoogle Scholar
  2. 2.
    Rogers GN, Paulson JC, Daniels RS, Skehel JJ, Wilson IA, Wiley DC (1983) Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature 304(5921):76–78CrossRefGoogle Scholar
  3. 3.
    Preliminary review of D222G amino acid substitution in the haemagglutinin of pandemic influenza A (H1N1) 2009 viruses (2010). Wkly Epidemiol Rec 85 (4):21–22Google Scholar
  4. 4.
    Puzelli S, Facchini M, De Marco MA, Palmieri A, Spagnolo D, Boros S, Corcioli F, Trotta D, Bagnarelli P, Azzi A, Cassone A, Rezza G, Pompa MG, Oleari F, Donatelli I (2010) Molecular surveillance of pandemic influenza A(H1N1) viruses circulating in Italy from May 2009 to February 2010: association between haemagglutinin mutations and clinical outcome. Euro Surveill 15 (43):pii = 19696Google Scholar
  5. 5.
    Kilander A, Rykkvin R, Dudman SG, Hungnes O (2010) Observed association between the HA1 mutation D222G in the 2009 pandemic influenza A(H1N1) virus and severe clinical outcome, Norway 2009–2010. Euro Surveill 15 (9):pii = 19498Google Scholar
  6. 6.
    Stevens J, Blixt O, Glaser L, Taubenberger JK, Palese P, Paulson JC, Wilson IA (2006) Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol 355(5):1143–1155CrossRefGoogle Scholar
  7. 7.
    Chan PK, Lee N, Joynt GM, Choi KW, Cheung JL, Yeung AC, Lam P, Wong R, Leung BW, So HY, Lam WY, Hui DC (2011) Clinical and virological course of infection with haemagglutinin D222G mutant strain of 2009 pandemic influenza A (H1N1) virus. J Clin Virol 50(4):320–324CrossRefGoogle Scholar
  8. 8.
    Chutinimitkul S, Herfst S, Steel J, Lowen AC, Ye J, van Riel D, Schrauwen EJ, Bestebroer TM, Koel B, Burke DF, Sutherland-Cash KH, Whittleston CS, Russell CA, Wales DJ, Smith DJ, Jonges M, Meijer A, Koopmans M, Rimmelzwaan GF, Kuiken T, Osterhaus AD, Garcia-Sastre A, Perez DR, Fouchier RA (2010) Virulence-associated substitution D222G in the hemagglutinin of 2009 pandemic influenza A(H1N1) virus affects receptor binding. J Virol 84(22):11802–11813CrossRefGoogle Scholar
  9. 9.
    Liao HY, Hsu CH, Wang SC, Liang CH, Yen HY, Su CY, Chen CH, Jan JT, Ren CT, Cheng TJ, Wu CY, Wong CH (2010) Differential receptor binding affinities of influenza hemagglutinins on glycan arrays. J Am Chem Soc 132(42):14849–14856CrossRefGoogle Scholar
  10. 10.
    Newhouse EI, Xu D, Markwick PR, Amaro RE, Pao HC, Wu KJ, Alam M, McCammon JA, Li WW (2009) Mechanism of glycan receptor recognition and specificity switch for avian, swine, and human adapted influenza virus hemagglutinins: a molecular dynamics perspective. J Am Chem Soc 131(47):17430–17442CrossRefGoogle Scholar
  11. 11.
    Das P, Li J, Royyuru AK, Zhou R (2009) Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity. J Comput Chem 30(11):1654–1663CrossRefGoogle Scholar
  12. 12.
    Nunthaboot N, Rungrotmongkol T, Malaisree M, Kaiyawet N, Decha P, Sompornpisut P, Poovorawan Y, Hannongbua S (2010) Evolution of human receptor binding affinity of H1N1 hemagglutinins from 1918 to 2009 pandemic influenza A virus. J Chem Inf Model 50(8):1410–1417CrossRefGoogle Scholar
  13. 13.
    Xu D, Newhouse EI, Amaro RE, Pao HC, Cheng LS, Markwick PR, McCammon JA, Li WW, Arzberger PW (2009) Distinct glycan topology for avian and human sialopentasaccharide receptor analogues upon binding different hemagglutinins: a molecular dynamics perspective. J Mol Biol 387(2):465–491CrossRefGoogle Scholar
  14. 14.
    Liu H, Yao X (2010) Molecular basis of the interaction for an essential subunit PA-PB1 in influenza virus RNA polymerase: insights from molecular dynamics simulation and free energy calculation. Mol Pharmaceutics 7(1):75–85CrossRefGoogle Scholar
  15. 15.
    Liu H, Yao X, Wang C, Han J (2010) In silico identification of the potential drug resistance sites over 2009 influenza A (H1N1) virus neuraminidase. Mol Pharmaceutics 7(3):894–904CrossRefGoogle Scholar
  16. 16.
    Dirauf P, Meiselbach H, Sticht H (2010) Effects of the V82A and I54V mutations on the dynamics and ligand binding properties of HIV-1 protease. J Mol Model 16(10):1577–1583CrossRefGoogle Scholar
  17. 17.
    Pan D, Sun H, Bai C, Shen Y, Jin N, Liu H, Yao X (2011) Prediction of zanamivir efficiency over the possible 2009 influenza A (H1N1) mutants by multiple molecular dynamics simulations and free energy calculations. J Mol Model 17(10):2465–2473CrossRefGoogle Scholar
  18. 18.
    Yang H, Carney P, Stevens J (2010) Structure and Receptor binding properties of a pandemic H1N1 virus hemagglutinin. PLoS Curr 2:RRN1152Google Scholar
  19. 19.
    Gamblin SJ, Haire LF, Russell RJ, Stevens DJ, Xiao B, Ha Y, Vasisht N, Steinhauer DA, Daniels RS, Elliot A, Wiley DC, Skehel JJ (2004) The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303(5665):1838–1842CrossRefGoogle Scholar
  20. 20.
    DeLano WL (2002) The PyMOL Molecular Graphics System, DeLano Scientific. Palo Alto, CA. http://www.pymol.org
  21. 21.
    Xu R, McBride R, Nycholat CM, Paulson JC, Wilson IA (2011) Structural characterization of the hemagglutinin receptor specificity from the 2009 H1N1 influenza pandemic. J Virol doi: JVI.06322-11
  22. 22.
    Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688CrossRefGoogle Scholar
  23. 23.
    Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725CrossRefGoogle Scholar
  24. 24.
    Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-Outeirino J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates J Comput Chem 29(4):622–655Google Scholar
  25. 25.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935CrossRefGoogle Scholar
  26. 26.
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593CrossRefGoogle Scholar
  27. 27.
    Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341CrossRefGoogle Scholar
  28. 28.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. The J Chem Phys 81(8):3684–3690CrossRefGoogle Scholar
  29. 29.
    Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE 3rd (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897CrossRefGoogle Scholar
  30. 30.
    Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate − DNA helices. J Am Chem Soc 120(37):9401–9409CrossRefGoogle Scholar
  31. 31.
    Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51(1):69–82CrossRefGoogle Scholar
  32. 32.
    Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98(7):1978–1988CrossRefGoogle Scholar
  33. 33.
    Chong LT, Duan Y, Wang L, Massova I, Kollman PA (1999) Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48 G7. Proc Natl Acad Sci USA 96(25):14330–14335CrossRefGoogle Scholar
  34. 34.
    Shao J, Tanner SW, Thompson N, Cheatham TE (2007) Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. J Chem Theor Comput 3(6):2312–2334Google Scholar
  35. 35.
    Strockbine B, Rizzo RC (2007) Binding of antifusion peptides with HIVgp41 from molecular dynamics simulations: quantitative correlation with experiment. Proteins 67(3):630–642CrossRefGoogle Scholar
  36. 36.
    Raju RK, Burton NA, Hillier IH (2010) Modelling the binding of HIV-reverse transcriptase and nevirapine: an assessment of quantum mechanical and force field approaches and predictions of the effect of mutations on binding. Phys Chem Chem Phys 12(26):7117–7125CrossRefGoogle Scholar
  37. 37.
    McCammon JA (2009) Darwinian biophysics: electrostatics and evolution in the kinetics of molecular binding. Proc Natl Acad Sci USA 106(19):7683–7684CrossRefGoogle Scholar
  38. 38.
    García-Sosa AT, Mancera RL (2010) Free energy calculations of mutations involving a tightly bound water molecule and ligand substitutions in a ligand-protein complex. Mol Inform 29(8–9):589–600CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of PharmacyLanzhou UniversityLanzhouChina
  2. 2.State Key Laboratory of Applied Organic Chemistry and Department of ChemistryLanzhou UniversityLanzhouChina
  3. 3.Key Lab of Preclinical Study for New Drugs of Gansu ProvinceLanzhou UniversityLanzhouChina

Personalised recommendations