Advertisement

Journal of Molecular Modeling

, Volume 18, Issue 9, pp 4053–4060 | Cite as

A novel dimerization interface of cyclic nucleotide binding domain, which is disrupted in presence of cAMP: implications for CNG channels gating

  • Ivan Y. Gushchin
  • Valentin I. Gordeliy
  • Sergei GrudininEmail author
Original Paper
  • 289 Downloads

Abstract

Cyclic nucleotide binding domain (CNBD) is a ubiquitous domain of effector proteins involved in signalling cascades of prokaryota and eukaryota. CNBD activation by cyclic nucleotide monophosphate (cNMP) is studied well in the case of several proteins. However, this knowledge is hardly applicable to cNMP-modulated cation channels. Despite the availability of CNBD crystal structures of bacterial cyclic nucleotide-gated (CNG) and mammalian hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels in presence and absence of the cNMP, the full understanding of CNBD conformational changes during activation is lacking. Here, we describe a novel CNBD dimerization interface found in crystal structures of bacterial CNG channel MlotiK1 and mammalian cAMP-activated guanine nucleotide-exchange factor Epac2. Molecular dynamics simulations show that the found interface is stable on the studied timescale of 100 ns, in contrast to the dimerization interface, reported previously. Comparisons with cN-bound structures of CNBD show that the dimerization is incompatible with cAMP binding. Thus, the cAMP-dependent monomerization of CNBD may be an alternative mechanism of the cAMP sensing. Based on these findings, we propose a model of the bacterial CNG channel modulation by cAMP.

Figure

Model of the bacterial CNG channel activation by cAMP

Keywords

Channel gating CNG channel Cyclic-nucleotide binding domain Epac2 

Abbreviations

CNBD

Cyclic nucleotide binding domain

cNMP

Cyclic nucleotide monophosphate

cAMP

Cyclic adenosine monophosphate

CNG

Channel, cyclic nucleotide-gated channel

HCN

Channel, hyperpolarization-activated cyclic nucleotide-modulated channel

MD

Molecular dynamics

RMSD

Root mean square deviation

PCA

Principal components analysis

Notes

Acknowledgments

This work was supported by the program "Chaires d'excellence" edition 2008 of the Agence National de la Recherche France, Commissariat a l’Energie atomique (Institut de Biologie Structurale) – Helmholtz Association (Forschungszentrum Juelich) Specific Topic of Cooperation agreement 5.1, the Marie Curie grant for training and career development of researchers (FP7-PEOPLE-2007-1-1-ITN, project Structural Biology of Membrane Proteins) and by an European Commission 7th Framework Programme grant for the EDICT (European Drug Initiative on Channels and Transporters) consortium (HEALTH-201924). This work was done in the framework of Russian State Contracts № 02.740.11.0299, № 02.740.11.5010 and №P974 in the framework of activity 1.2.2 of the Federal Target Program «Scientific and academic research cadres of innovative Russia» for 2009–2013 years. Part of this work was supported by the German Federal Ministry of Education and Research (PhoNa – Photonic Nanomaterials). Partial financial support from Onexim group is gratefully acknowledged. Part of the simulations were conducted on the Juropa supercomputer at Forschungszentrum Juelich.

References

  1. 1.
    Rehmann H, Wittinghofer A, Bos JL (2007) Capturing cyclic nucleotides in action: snapshots from crystallographic studies. Nat Rev Mol Cell Biol 8:63–73. doi: 10.1038/nrm2082 CrossRefGoogle Scholar
  2. 2.
    Won HS, Lee YS, Lee SH, Lee BJ (2009) Structural overview on the allosteric activation of cyclic AMP receptor protein. Biochim Biophys Acta Proteins Proteom 1794:1299–1308. doi: 10.1016/j.bbapap.2009.04.015 CrossRefGoogle Scholar
  3. 3.
    Popovych N, Tzeng SR, Tonelli M, Ebright RH, Kalodimos CG (2009) Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc Natl Acad Sci U S A 106:6927–6932. doi: 10.1073/pnas.0900595106 CrossRefGoogle Scholar
  4. 4.
    Kim C, Cheng CY, Saldanha SA, Taylor SS (2007) PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation. Cell 130:1032–1043. doi: 10.1016/j.cell.2007.07.018 CrossRefGoogle Scholar
  5. 5.
    Gloerich M, Bos JL (2010) Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 50:355–375. doi: 10.1146/annurev.pharmtox.010909.105714 CrossRefGoogle Scholar
  6. 6.
    Cukkemane A, Seifert R, Kaupp UB (2011) Cooperative and uncooperative cyclic-nucleotide-gated ion channels. Trends Biochem Sci 36:55–64. doi: 10.1016/j.tibs.2010.07.004 CrossRefGoogle Scholar
  7. 7.
    Clayton GM, Silverman WR, Heginbotham L, Morais-Cabral JH (2004) Structural basis of ligand activation in a cyclic nucleotide regulated potassium channel. Cell 119:615–627. doi: 10.1016/j.cell.2004.10.030 CrossRefGoogle Scholar
  8. 8.
    Altieri SL, Clayton GM, Silverman WR, Olivares AO, De La Cruz EM, Thomas LR, Morais-Cabral JH (2008) Structural and energetic analysis of activation by a cyclic nucleotide binding domain. J Mol Biol 381:655–669. doi: 10.1016/j.jmb.2008.06.011 CrossRefGoogle Scholar
  9. 9.
    Schunke S, Stoldt M, Novak K, Kaupp UB, Willbold D (2009) Solution structure of the Mesorhizobium loti K1 channel cyclic nucleotide-binding domain in complex with cAMP. EMBO Rep 10:729–735. doi: 10.1038/embor.2009.68 CrossRefGoogle Scholar
  10. 10.
    Schünke S, Stoldt M, Lecher J, Kaupp UB, Willbold D (2011) Structural insights into conformational changes of a cyclic nucleotide-binding domain in solution from Mesorhizobium loti K1 channel. Proc Natl Acad Sci U S A 108:6121–6126. doi: 10.1073/pnas.1015890108 CrossRefGoogle Scholar
  11. 11.
    Chiu PL, Pagel M, Evans J, Chou HT, Zeng X, Gipson B, Stahlberg H, Nimigean C (2007) The structure of the prokaryotic cyclic nucleotide-modulated potassium channel MloK1 at 16 Å resolution. Structure 15:1053–1064. doi: 10.1016/j.str.2007.06.020 CrossRefGoogle Scholar
  12. 12.
    Zagotta WN, Olivier NB, Black KD, Young EC, Olson R, Gouaux E (2003) Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature 425:200–205. doi: 10.1038/nature01922 CrossRefGoogle Scholar
  13. 13.
    Taraska JW, Puljung MC, Olivier NB, Flynn GE, Zagotta WN (2009) Mapping the structure and conformational movements of proteins with transition metal ion FRET. Nat Meth 6:532–537. doi: 10.1038/nmeth.1341 CrossRefGoogle Scholar
  14. 14.
    Xu X, Vysotskaya ZV, Liu Q, Zhou L (2010) Structural basis for the cAMP-dependent gating in the human HCN4 channel. J Biol Chem 285:37082–37091. doi: 10.1074/jbc.M110.152033 CrossRefGoogle Scholar
  15. 15.
    Rehmann H, Prakash B, Wolf E, Rueppel A, de Rooij J, Bos JL, Wittinghofer A (2003) Structure and regulation of the cAMP-binding domains of Epac2. Nat Struct Mol Biol 10:26–32. doi: 10.1038/nsb878 CrossRefGoogle Scholar
  16. 16.
    Rehmann H, Das J, Knipscheer P, Wittinghofer A, Bos JL (2006) Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state. Nature 439:625–628. doi: 10.1038/nature04468 CrossRefGoogle Scholar
  17. 17.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. doi: 10.1002/jcc.20289 CrossRefGoogle Scholar
  18. 18.
    Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447. doi: 10.1021/ct700301q CrossRefGoogle Scholar
  19. 19.
    Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 73:765–783. doi: 10.1002/prot.22102 CrossRefGoogle Scholar
  20. 20.
    MacKerell BD, Bellott D, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616. doi: 10.1021/jp973084f CrossRefGoogle Scholar
  21. 21.
    Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101–014101–7. doi: 10.1063/1.2408420 CrossRefGoogle Scholar
  22. 22.
    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. doi: 10.1063/1.328693 CrossRefGoogle Scholar
  23. 23.
    Humphrey W, Dalke A, Schulten K (1996) VMD visual molecular dynamics. J Mol Graph 14:33–38. doi: 10.1016/0263-7855(96)00018-5 CrossRefGoogle Scholar
  24. 24.
    Kitao A, Go N (1999) Investigating protein dynamics in collective coordinate space. Curr Opin Struct Biol 9:164–169. doi: 10.1016/S0959-440X(99)80023-2 CrossRefGoogle Scholar
  25. 25.
    Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797. doi: 10.1016/j.jmb.2007.05.022 CrossRefGoogle Scholar
  26. 26.
    Clayton GM, Altieri S, Heginbotham L, Unger VM, Morais-Cabral JH (2008) Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel. Proc Natl Acad Sci U S A 105:1511–1515. doi: 10.1073/pnas.0711533105 CrossRefGoogle Scholar
  27. 27.
    Ponstingl H, Henrick K, Thornton JM (2000) Discriminating between homodimeric and monomeric proteins in the crystalline state. Proteins 41:47–57CrossRefGoogle Scholar
  28. 28.
    Van Valen D, Haataja M, Phillips R (2009) Biochemistry on a leash: the roles of tether length and geometry in signal integration proteins. Biophys J 96:1275–1292. doi: 10.1016/j.bpj.2008.10.052 CrossRefGoogle Scholar
  29. 29.
    Rehmann H, Arias-Palomo E, Hadders MA, Schwede F, Llorca O, Bos JL (2008) Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B. Nature 455:124–127. doi: 10.1038/nature07187 CrossRefGoogle Scholar
  30. 30.
    Cukkemane A, Grüter B, Novak K, Gensch T, Bönigk W, Gerharz T, Kaupp UB, Seifert R (2007) Subunits act independently in a cyclic nucleotide-activated K+ channel. EMBO Rep 8:749–755. doi: 10.1038/sj.embor.7401025 CrossRefGoogle Scholar
  31. 31.
    Flynn GE, Black KD, Islas LD, Sankaran B, Zagotta WN (2007) Structure and rearrangements in the carboxy-terminal region of SpIH channels. Structure 15:671–682. doi: 10.1016/j.str.2007.04.008 CrossRefGoogle Scholar
  32. 32.
    Nimigean CM, Shane T, Miller C (2004) A cyclic nucleotide modulated prokaryotic K+ channel. J Gen Physiol 124:203–210. doi: 10.1085/jgp.200409133 CrossRefGoogle Scholar
  33. 33.
    Shi N, Ye S, Alam A, Chen L, Jiang Y (2006) Atomic structure of a Na+ − and K+ −conducting channel. Nature 440:570–574. doi: 10.1038/nature04508 CrossRefGoogle Scholar
  34. 34.
    Alam A, Jiang Y (2009) High-resolution structure of the open NaK channel. Nat Struct Mol Biol 16:30–34. doi: 10.1038/nsmb.1531 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ivan Y. Gushchin
    • 1
    • 2
    • 3
    • 4
  • Valentin I. Gordeliy
    • 1
    • 2
    • 3
    • 4
    • 5
  • Sergei Grudinin
    • 6
    • 7
    Email author
  1. 1.Institut de Biologie Structurale Jean-Pierre EbelUniversité Joseph Fourier – Grenoble 1GrenobleFrance
  2. 2.Institut de Biologie Structurale Jean-Pierre EbelCEAGrenobleFrance
  3. 3.Institut de Biologie Structurale Jean-Pierre EbelCNRSGrenobleFrance
  4. 4.Research-educational Centre “Bionanophysics”Moscow Institute of Physics and TechnologyDolgoprudniyRussia
  5. 5.Institute of Complex Systems (ICS), ICS-5: Molecular BiophysicsResearch Centre JuelichJuelichGermany
  6. 6.NANO-DINRIA Grenoble-Rhone-Alpes Research CenterSaint Ismier CedexFrance
  7. 7.CNRS, Laboratoire Jean KuntzmannGrenoble Cedex 9France

Personalised recommendations