Journal of Molecular Modeling

, Volume 18, Issue 8, pp 3731–3741 | Cite as

Insights into the mechanisms of the selectivity filter of Escherichia coli aquaporin Z

Original Paper

Abstract

Aquaporin Z (AQPZ) is a tetrameric protein that forms water channels in the cell membrane of Escherichia coli. The histidine residue (residue 174) in the selectivity filter (SF) region plays an important role in the transport of water across the membrane. In this work, we perform equilibrium molecular dynamics (MD) simulations to illustrate the gating mechanism of the SF and the influences of residue 174 in two different protonation states: Hsd174 with the proton at Nδ, and Hse174 with the proton at Nε. We calculate the pore radii in the SF region versus the simulation time. We perform steered MD to compute the free-energy profile, i.e., the potential of mean force (PMF) of a water molecule through the SF region. We conduct a quantum mechanics calculation of the binding energy of one water molecule with the residues in the SF region. The hydrogen bonds formed between the side chain of Hsd174 and the side chain of residue 189 (Arg189) play important roles in the selectivity mechanism of AQPZ. The radii of the pores, the hydrogen-bond analysis, and the free energies show that it is easier for water molecules to permeate through the SF region of AQPZ with residue 174 in the Hse state than in the Hsd state.

Figure

Free energy profile estimated with the BD-FDT

Keywords

AQPZ Water channels Steered molecular dynamics BD-FDT 

References

  1. 1.
    Preston GM, Carroll TP, Guggino WB, Agre P (1992) Science 256:385–387CrossRefGoogle Scholar
  2. 2.
    Borgnia M, Nielsen S, Engel A, Agre P (1999) Annu Rev Biochem 68:425–458CrossRefGoogle Scholar
  3. 3.
    Agre P, Kozono D (2003) FEBS Lett 555:72–78CrossRefGoogle Scholar
  4. 4.
    King LS, Kozono D, Agre P (2004) Nat Rev Mol Cell Biol 5:687–698CrossRefGoogle Scholar
  5. 5.
    Hub JS, Grubmuller H, de Groot BL (2009) Handb Exp Pharmacol 190:57–76Google Scholar
  6. 6.
    Savage DF, Egea PF, Robles-Colmenares Y, O’Connell JD III, Stroud RM (2003) PLoS Biol 1:E72Google Scholar
  7. 7.
    Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Nature 407:599–605CrossRefGoogle Scholar
  8. 8.
    Sui HX, Han BG, Lee JK, Walian P, Jap BK (2001) Nature 414:872–878CrossRefGoogle Scholar
  9. 9.
    Fu DX, Libson A, Miercke LJW, Weitzman C, Nollert P, Krucinski J, Stroud RM (2000) Science 290:481–486CrossRefGoogle Scholar
  10. 10.
    Savage DF, Stroud RM (2007) J Mol Biol 368:607–617CrossRefGoogle Scholar
  11. 11.
    Savage DF, O’Connell JD III, Miercke LJ, Finer-Moore J, Stroud RM (2010) Proc Natl Acad Sci USA 107:17164–17169CrossRefGoogle Scholar
  12. 12.
    Jiang JS, Daniels BV, Fu D (2006) J Biol Chem 281:454–460CrossRefGoogle Scholar
  13. 13.
    Wang Y, Schulten K, Tajkhorshid E (2005) Structure 13:1107–1118CrossRefGoogle Scholar
  14. 14.
    Jensen MO, Mouritsen OG (2006) Biophys J 90:2270–2284CrossRefGoogle Scholar
  15. 15.
    Hashido M, Ikeguchi M, Kidera A (2005) FEBS Lett 579:5549–5552CrossRefGoogle Scholar
  16. 16.
    de Groot BL, Grubmuller H (2001) Science 294:2353–2357CrossRefGoogle Scholar
  17. 17.
    Tajkhorshid E, Nollert P, Jensen MO, Miercke LJ, O’Connell J, Stroud RM, Schulten K (2002) Science 296:525–530CrossRefGoogle Scholar
  18. 18.
    Jensen MO, Tajkhorshid E, Schulten K (2003) Biophys J 85:2884–2899CrossRefGoogle Scholar
  19. 19.
    Burykin A, Warshel A (2003) Biophys J 85:3696–3706CrossRefGoogle Scholar
  20. 20.
    Burykin A, Kato M, Warshel A (2003) Prot Struc Funct Gen 52:412–426CrossRefGoogle Scholar
  21. 21.
    Kato M, Pisliakov AV, Warshel A (2006) Proteins 64:829–844CrossRefGoogle Scholar
  22. 22.
    de Groot BL, Grubmuller H (2005) Curr Opin Struct Biol 15:176–183CrossRefGoogle Scholar
  23. 23.
    Chen H, Ilan B, Wu Y, Zhu F, Schulten K, Voth GA (2007) Biophys J 92:46–60CrossRefGoogle Scholar
  24. 24.
    Wang Y, Shaikh SA, Tajkhorshid E (2010) Physiology (Bethesda) 25:142–154CrossRefGoogle Scholar
  25. 25.
    Calamita G (2000) Mol Microbiol 37:254–262CrossRefGoogle Scholar
  26. 26.
    Borgnia MJ, Kozono D, Calamita G, Maloney PC, Agre P (1999) J Mol Biol 291:1169–1179CrossRefGoogle Scholar
  27. 27.
    Pohl P (2004) Biol Chem 385:921–926CrossRefGoogle Scholar
  28. 28.
    Vila JA, Arnautova YA, Vorobjev Y, Scheraga HA (2011) Proc Natl Acad Sci USA 108:5602–5607CrossRefGoogle Scholar
  29. 29.
    Cheng F, Sun H, Zhang Y, Mukkamala D, Oldfield E (2005) J Am Chem Soc 127:12544–12554CrossRefGoogle Scholar
  30. 30.
    Roberts JD (2000) ABCs of FT-NMR, Sausalito, CA: University Science Books 258–259Google Scholar
  31. 31.
    Hu F, Luo W, Hong M (2010) Science 330:505–508CrossRefGoogle Scholar
  32. 32.
    Lu YP, Yang CY, Wang SM (2006) J Am Chem Soc 128:11830–11839CrossRefGoogle Scholar
  33. 33.
    Duan LL, Tong Y, Mei Y, Zhang QG, Zhang JZH (2007) J Chem Phys 127:145101–145106CrossRefGoogle Scholar
  34. 34.
    Shi SH, Hu GD, Chen JZ, Zhang SL, Zhang QG (2009) Acta Chim Sinica 67:2791–2797Google Scholar
  35. 35.
    Sotomayor M, Schulten K (2007) Science 316:1144–1148CrossRefGoogle Scholar
  36. 36.
    Colizzi F, Perozzo R, Scapozza L, Recanatini M, Cavalli A (2010) J Am Chem Soc 132:7361–7371CrossRefGoogle Scholar
  37. 37.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38, 27-28CrossRefGoogle Scholar
  38. 38.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935CrossRefGoogle Scholar
  39. 39.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comput Chem 26:1781–1802CrossRefGoogle Scholar
  40. 40.
    MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  41. 41.
    Feller SE, Zhang YH, Pastor RW, Brooks BR (1995) J Chem Phys 103:4613–4621CrossRefGoogle Scholar
  42. 42.
    Tuckerman M, Berne BJ, Martyna GJ (1992) J Chem Phys 97:1990–2001CrossRefGoogle Scholar
  43. 43.
    Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  44. 44.
    Park S, Schulten K (2004) J Chem Phys 120:5946–5961CrossRefGoogle Scholar
  45. 45.
    Isralewitz B, Baudry J, Gullingsrud J, Kosztin D, Schulten K (2001) J Mol Graph Model 19:13–25CrossRefGoogle Scholar
  46. 46.
    Chen LY (2008) J Chem Phys 129:144113–144117CrossRefGoogle Scholar
  47. 47.
    Chen LY, Bastien DA, Espejel HE (2010) Phys Chem Chem Phys 12:6579–6582CrossRefGoogle Scholar
  48. 48.
    Hu G, Chen LY (2010) Biophys Chem 153:97–103CrossRefGoogle Scholar
  49. 49.
    Chen LY (2011) Phys Chem Chem Phys 13:6176–6183CrossRefGoogle Scholar
  50. 50.
    Hirano Y, Okimoto N, Kadohira I, Suematsu M, Yasuoka K, Yasui M (2010) Biophys J 98:1512–1519CrossRefGoogle Scholar
  51. 51.
    Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MSP (1996) J Mol Graph 14:354–360CrossRefGoogle Scholar
  52. 52.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 03, revision C.02, Gaussian Inc., WallingfordGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Texas at San AntonioSan AntonioUSA
  2. 2.Shandong Provincial Key Laboratory of Functional Macromolecular BiophysicsDezhouChina
  3. 3.Department of PhysicsDezhou UniversityDezhouChina

Personalised recommendations