Advertisement

Journal of Molecular Modeling

, Volume 18, Issue 8, pp 3553–3562 | Cite as

Equilibrium geometries, stabilities, and electronic properties of the cationic Au n Be+ (n = 1-8) clusters: comparison with pure gold clusters

  • Peng Shao
  • Xiao-Yu KuangEmail author
  • Ya-Ru Zhao
  • Yan-Fang Li
  • Su-Juan Wang
Original Paper

Abstract

Ab initio method based on density functional theory at PW91PW91 level has been applied in studying the geometrical structures, relative stabilities, and electronic properties of small bimetallic Au n Be+ (n = 1–8) cluster cations. The geometrical optimizations indicate that a transition point from preferentially planar (two-dimensional) to three-dimensional (3D) structures occurs at n = 6. The relative stabilities of Au n Be+ clusters for the ground-state structures are analyzed based on the averaged binding energies, fragmentation energies, and second-order difference of energies. The calculated results reveal that the AuBe+ and Au5Be+ clusters possess higher relative stability for small size Au n Be+ (n = 1–8) clusters. The HOMO-LUMO energy gaps as a function of the cluster size exhibit a pronounced even-odd alternation phenomenon. Sequently, the natural population analysis and polarizability for our systems have been analyzed and compared further.

Keywords

AunBe+ cluster Density functional method Geometrical configuration 

Notes

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (Nos. 10974138)

References

  1. 1.
    Logunov SL, Ahmadi TS, El-Sayed MA, Khoury JT, Whetten RLJ (1997) Phys Chem B 101:3713–3719CrossRefGoogle Scholar
  2. 2.
    Gaudry M, Lerme J, Cottancin E, Pellarin M, Vialle JL, Broyer M, Prevel B, Treilleux M, Melinon P (2001) Phys Rev B 64:085407CrossRefGoogle Scholar
  3. 3.
    Sanchez A, Abbet S, Heiz U, Schneider WD, Haekkinen H, Barnett RN, Landman U (1999) J Phys Chem A 103:9573–9578CrossRefGoogle Scholar
  4. 4.
    Schnabel P, Irion MP, Weil KG (1991) J Phys Chem 95:9688–9694CrossRefGoogle Scholar
  5. 5.
    Fayet P, Granzer F, Hegenbart G, Moisar E, Pischel B, Woeste L (1985) Phys Rev Lett 55:3002–3004CrossRefGoogle Scholar
  6. 6.
    Zehner DM, Goodman DM (1987) Mater Res Soc 83:59–64Google Scholar
  7. 7.
    Rodriguez JA (1996) Surf Sci Rep 24:223–287CrossRefGoogle Scholar
  8. 8.
    Majumder C, Kandalam AK, Jena P (2006) Phys Rev B 74:205437CrossRefGoogle Scholar
  9. 9.
    Li X, Kiran B, Cui LF, Wang LS (2005) Phys Rev Lett 95:253401CrossRefGoogle Scholar
  10. 10.
    Graciani J, Oviedo J, Sanz JF (2006) J Phys Chem B 110:11600–11603CrossRefGoogle Scholar
  11. 11.
    Teles JH, Brode S, Chabanas M (1998) Angew Chem 99:2589–2593Google Scholar
  12. 12.
    McRae R, Lai B, Vogt S, Fahrni CJ (2006) J Struct Biol 155:22–29CrossRefGoogle Scholar
  13. 13.
    Ackerson CJ, Jadzinsky PD, Jensen GJ, Kornberg RD (2006) J Am Chem Soc 128:2635–2640CrossRefGoogle Scholar
  14. 14.
    Xiao L, Wang L (2004) Chem Phys Lett 392:452–455CrossRefGoogle Scholar
  15. 15.
    Die D, Kuang XY, Gou JJ, Zheng XB (2010) J Phys Chem Solids 71:770–776CrossRefGoogle Scholar
  16. 16.
    Bürgel C, Reilly NM, Johnson GE, Mitrić R, Kimble ML, Castleman AW Jr, Bonačić-Koutecký V (2008) J Am Chem Soc 130:1694–1698CrossRefGoogle Scholar
  17. 17.
    Zhai HJ, Li J, Wang LS (2004) J Chem Phys 121:8369–8374CrossRefGoogle Scholar
  18. 18.
    Koszinowski K, Schröder D, Schwarz H (2003) Chem Phys Chem 4:1233–1237CrossRefGoogle Scholar
  19. 19.
    Häkkinen H, Abbet S, Sanchez A, Heiz U, Landman U (2003) Angew Chem Int Ed 42:1297–1300CrossRefGoogle Scholar
  20. 20.
    Pyykkö P, Runeberg N (2002) Angew Chem Int Ed 41:2174–2176CrossRefGoogle Scholar
  21. 21.
    Yuan DW, Wang Y, Zeng Z (2005) J Chem Phys 122:114310CrossRefGoogle Scholar
  22. 22.
    Zhang M, He LM, Zhao LX, Feng XJ, Luo YH (2009) J Phys Chem C 113:6491–6496CrossRefGoogle Scholar
  23. 23.
    Ghanty TK, Banerjee A, Chakrabarti A (2010) J Phys Chem C 114:20–27CrossRefGoogle Scholar
  24. 24.
    Tanaka H, Neukermans S, Janssens E, Silverans RE, Lievens P (2003) J Am Chem Soc 125:2862–2863CrossRefGoogle Scholar
  25. 25.
    Tanaka H, Neukermans S, Janssens E, Silverans RE, Lievens P (2003) J Chem Phys 119:7115–7124CrossRefGoogle Scholar
  26. 26.
    Janssens E, Tanaka H, Neukermans S, Silverans RE, Lievens P (2003) New J Phys 5(46):1–46.10Google Scholar
  27. 27.
    Bouwen W, Vanhoutte F, Despa F, Bouckaert S, Neukermans S, Kuhn LT, Weidele H, Lievens P, Silverans RE (1999) Chem Phys Lett 314:227–233CrossRefGoogle Scholar
  28. 28.
    Heinebrodt M, Malinowski N, Tast F, Branz W, Billas IML, Martin TP (1999) J Chem Phys 110:9915–9922CrossRefGoogle Scholar
  29. 29.
    Petzow G, Zorn H (1974) Chem Ztg 98:236–241Google Scholar
  30. 30.
    Takagi T, Matsubara K, Takaoka H (1980) J Appl Phys 51:5419–5424CrossRefGoogle Scholar
  31. 31.
    Starck J, Meyer W (1996) Chem Phys Lett 258:421–426CrossRefGoogle Scholar
  32. 32.
    Martin JML (1999) Chem Phys Lett 303:399–407CrossRefGoogle Scholar
  33. 33.
    Gdanitz RJ (1999) Chem Phys Lett 312:578–584CrossRefGoogle Scholar
  34. 34.
    Zhao YR, Kuang XY, Zheng BB, Wang SJ, Li YF (2010) J Mol Modeld doi: 10.1007/s00894-011-1051-2
  35. 35.
    Chen DD, Kuang XY, Zhao YR, Shao P, Li YF (2010) Chin Phys B 20:063601CrossRefGoogle Scholar
  36. 36.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian H P, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian, Wallingford, CTGoogle Scholar
  37. 37.
    Perdew P, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  38. 38.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310CrossRefGoogle Scholar
  39. 39.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–655CrossRefGoogle Scholar
  40. 40.
    Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular Orbital Theory. Wiley, New YorkGoogle Scholar
  41. 41.
    Barysz M, Pyykkö P (1998) Chem Phys Lett 285:398–403CrossRefGoogle Scholar
  42. 42.
    Ajanta D, Ramesh CD (2008) J Mol Struct THEOCHEM 870:83–93CrossRefGoogle Scholar
  43. 43.
    Torres MB, Fernández EM, Balbás LC (2005) Phys Rev B 71:155412CrossRefGoogle Scholar
  44. 44.
    Nagy G, Gelb LD, Walker AV (2005) J Am Soc Mass Spectrom 16:733–742CrossRefGoogle Scholar
  45. 45.
    Gilb S, Weis P, Furche F, Ahlrichs R, Kappes MM (2002) J Chem Phys 116:4094–4102CrossRefGoogle Scholar
  46. 46.
    Reed AE, Weinstock B, Weinhold F (1985) J Chem Phys 83:735–747CrossRefGoogle Scholar
  47. 47.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  48. 48.
    Balducci G, Ciccioli A, Gigli G (2004) J Chem Phys 112:7748–7755CrossRefGoogle Scholar
  49. 49.
    Pyykkö P, Atsumi M (2009) Chem Eur J 15:12770–12779CrossRefGoogle Scholar
  50. 50.
    Pyykkö P (2005) Inorg Chim Acta 358:4113–4130CrossRefGoogle Scholar
  51. 51.
    Wesendrup R, Hunt T, Schwerdtfeger P (2000) J Chem Phys 112:9356–9362CrossRefGoogle Scholar
  52. 52.
    Pyykkö P (1988) Chem Rev 88:563–594CrossRefGoogle Scholar
  53. 53.
    Gupta K, Ghanty TK, Ghosh SK (2010) Phys Chem Chem Phys 12:2929–2934CrossRefGoogle Scholar
  54. 54.
    Chattaraj PK, Sengupta S (1996) J Phys Chem 100:16126–16130CrossRefGoogle Scholar
  55. 55.
    Chattaraj PK, Fuentealba P, Jaque P, Toro-Labbé A (1999) J Phys Chem A 103:9307–9302CrossRefGoogle Scholar
  56. 56.
    Roos BO, Liudh R, Malmqvist PA, Veryazov V, Widmark PO (2005) J Phys Chem A 109:6575–6579CrossRefGoogle Scholar
  57. 57.
    Bégué D, Mérawa M, Rérat M, Pouchan C (1999) Chem Phys Lett 301:43–52CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Peng Shao
    • 1
  • Xiao-Yu Kuang
    • 1
    • 2
    Email author
  • Ya-Ru Zhao
    • 1
  • Yan-Fang Li
    • 1
  • Su-Juan Wang
    • 1
  1. 1.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduChina
  2. 2.International Centre for Materials PhysicsAcademia SinicaShenyangChina

Personalised recommendations