Journal of Molecular Modeling

, Volume 18, Issue 7, pp 3139–3145 | Cite as

Structural analysis of secretory phospholipase A2 from Clonorchis sinensis: therapeutic implications for hepatic fibrosis

  • Gururao HariprasadEmail author
  • Punit Kaur
  • Alagiri Srinivasan
  • Tej Pal Singh
  • Manoj Kumar
Original Paper


Hepatic fibrosis is a common complication of the infection by the parasite, Clonorchis sinensis. There is a high incidence of this disease in the Asian countries with an increased risk of conversion to cancer. A secretory phospholipase A2 (PLA2) enzyme from the parasite is implicated in the pathology. This is an attractive drug target in the light of extensive structural characterization of this class of enzyme. In this study, the structure of the enzyme was modeled based on its sequence homology to the group III bee venom PLA2. On analysis, the overall structure essentially is comprised of three helices, two sets of β-wings and an elongated C-terminal extension. The structure is stabilized by four disulfide bonds. The structure is comprised of a calcium binding loop, active site and a substrate binding hydrophobic channel. The active site of the enzyme shows the classical features of PLA2 with the participation of the three residues: histidine-aspartic acid-tyrosine in hydrogen bond formation. This is an interesting variation from the house keeping group III PLA2 enzyme of human which has a histidine-aspartic acid and phenylalanine arrangement at the active site. This difference is therefore an important structural parameter that can be exploited to design specific inhibitor molecules against the pathogen PLA2. Likewise, there are certain unique structural features in the hydrophobic channel and the putative membrane binding surface of the PLA2 from Clonorchis sinensis that not only help understand the mechanism of action but also provide knowledge for a targeted therapy of liver fibrosis caused by the parasite.


Clonorchis sinensis Drug target Group III phospholipase A2 Hepatic fibrosis 



Phospholipase A2


Expert protein analysis system


Protein structure check


Chemistry at HARvard Macromolecular Mechanics



GH acknowledges the project grant (SR/FT/18) from Department of Science and Technology, Government of India and the ‘Pool Officer’ fellowship from the Council of Scientific and Industrial Research, Government of India. The financial support to the Biomedical Informatics Center at the institute by Indian Council of Medical Research, Government of India, is gratefully acknowledged.


  1. 1.
    Rim HJ (2005) Clonorchiasis: an update. J Helminthol 79:269–281CrossRefGoogle Scholar
  2. 2.
    Hu FY, Hu XC, Ma CL, Xu J, Yu XB (2009) Excretory/secretory antigens from Clonorchis sinensis induces hepatic fibrosis in rats. Nan Fang Yi Ke Da Xue Xue Bao 29:393–396Google Scholar
  3. 3.
    Choi BI, Han JK, Hong ST, Lee KH (2004) Clonorchiasis and cholangiocarcinoma: etiologic relationship and imaging diagnosis. Clin Microbiol Rev 17:540–552CrossRefGoogle Scholar
  4. 4.
    Li F, Wang JY (2009) Targeted delivery of drugs for liver fibrosis. Expert Opin Drug Deliv 9:531–541CrossRefGoogle Scholar
  5. 5.
    Xu MJ, Liu Q, Nisbet AJ, Cai XQ, Yan C et al (2010) Identification and characterization of microRNAs in Clonorchis sinensis of human health significance. BMC Genomics 11:521CrossRefGoogle Scholar
  6. 6.
    Zheng M, Hu K, Liu W, Hu X, Hu F et al (2011) Proteomic analysis of excretory secretory products from Clonorchis sinensis adult worms: molecular characterization and serological reactivity of a excretory-secretory antigen-fructose-1,6 bisphosphatase. Parasitol Res 109:737–744CrossRefGoogle Scholar
  7. 7.
    Hu F, Hu X, Ma C, Zhao J, Xu J et al (2009) Molecular characterization of a novel Clonorchis sinensis secretory phospholipase A2 and investigation of its potential contribution to hepatic fibrosis. Mol Biochem Parasit 167:127–134CrossRefGoogle Scholar
  8. 8.
    Six DA, Dennis EA (2000) The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta 1488:1–19Google Scholar
  9. 9.
    Scott DL, Otwinowski Z, Gelb MH, Sigler PB (1990) Crystal structure of bee-venom phospholipase A2 in a complex with a transition-state analogue. Science 250:1563–1566CrossRefGoogle Scholar
  10. 10.
    Hariprasad G, Baskar S, Das U, Ethayathulla AS, Kaur P et al (2007) Cloning, sequence analysis and homology modeling of a novel phospholipase A2 from Heterometrus fulvipes (Indian black scorpion). DNA Seq 18:242–246CrossRefGoogle Scholar
  11. 11.
    Hariprasad G, Saravanan K, Baskar S, Das U, Sharma S et al (2009) Group III PLA2 from the scorpion, Mesobuthus tamulus: cloning and recombinant expression in E. coli. Electro. J Biotech 12:3Google Scholar
  12. 12.
    Masuda S, Yamamoto K, Hirabayashi T, Ishikawa Y, Ishii T et al (2008) Human group III secreted phospholipase A2 promotes neuronal outgrowth and survival. Biochem J 409:429–438CrossRefGoogle Scholar
  13. 13.
    Hariprasad G, Kumar M, Kaur P, Singh TP, Kumar RP (2010) Human group III PLA2 as a drug target: structural analysis and inhibitor binding studies. Int J Biol Macr 47:496–501CrossRefGoogle Scholar
  14. 14.
    Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinfo Chap 2, unit 2.3Google Scholar
  15. 15.
    Combet C, Jambon M, Deléage G, Geourjon C (2002) Geno3D: automatic comparative molecular modelling of protein. Bioinformatics 18:213–214CrossRefGoogle Scholar
  16. 16.
    Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201CrossRefGoogle Scholar
  17. 17.
    Lambert C, Léonard N, De Bolle X, Depiereux E (2002) ESyPred3D: Prediction of proteins 3D structures. Bioinformatics 18:1250–1256CrossRefGoogle Scholar
  18. 18.
    Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371CrossRefGoogle Scholar
  19. 19.
    Nielsen M, Lundegaard C, Lund O, Petersen TN (2010) CPHmodels-3.0 - Remote homology modeling using structure guided sequence profiles. Nucleic Acids Res 38:W576–W581CrossRefGoogle Scholar
  20. 20.
    De Lano WL (2002) The PyMOL molecular graphics system. San Carlos, CA, USAGoogle Scholar
  21. 21.
    Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291CrossRefGoogle Scholar
  22. 22.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S et al (1983) CHARMM: A programme for macromolecular energy minimization and dynamics calculations. J Comput Chem 4:187–217CrossRefGoogle Scholar
  23. 23.
    Momany FA, Rone R (1992) Validation of the General Purpose QUANTA 3.2/CHARMm Force Field. J Comput Chem 13:888–900CrossRefGoogle Scholar
  24. 24.
    Accelrys Software Inc., (2003) Cerius2 Modeling Environment, Release 4.7, San Diego: Accelrys Software IncGoogle Scholar
  25. 25.
    Valentin E, Ghomashchi F, Gelb MH, Lazdunski M, Lambeau G (2000) Novel human secreted phospholipase A(2) with homology to the group III bee venom enzyme. J Biol Chem 275:7492–7496CrossRefGoogle Scholar
  26. 26.
    Jabeen T, Singh N, Singh RK, Ethayathulla AS, Sharma S et al (2005) Crystal structure of a novel phospholipase A2 from Naja naja sagittifera with a strong anti-coagulant activity. Toxicon 46:865–875CrossRefGoogle Scholar
  27. 27.
    Singh G, Gourinath S, Sharma S, Paramasivam M, Srinivasan A et al (2001) Sequence and crystal structure determination of a basic phospholipase A2 from common krait (Bungarus caeruleus) at 2.4 Å resolution: identification and characterization of its pharmacological sites. J Mol Biol 307:1049–5109CrossRefGoogle Scholar
  28. 28.
    Wijewickrama GT, Albanese A, Kim YJ, Oh YS, Murray PS et al (2006) Unique membrane interaction mode of group IIF phospholipase A2. J Biol Chem 281:32741–32754CrossRefGoogle Scholar
  29. 29.
    Hariprasad G, Kumar M, Srinivasan A, Kaur P, Singh TP et al (2011) Group III phospholipase A2 from the scorpion, Mesobuthus tamulus: targeting and reversible inhibition by native peptides. Int J Biol Macr 48:423–431CrossRefGoogle Scholar
  30. 30.
    Murakami M, Yoshihara K, Shimbara S, Lambeau G, Gelb MH et al (2002) Cellular arachidonate-releasing function and inflammation-associated expression of group IIF secretory phospholipase A2. J Biol Chem 277:19145–19155CrossRefGoogle Scholar
  31. 31.
    Annand RK, Kontoyianni M, Penzotti JE, Dudler T, Lybrand TP et al (1996) Active site of bee venom phospholipase A2: The role of histidine-34, aspartate-64 and tyrosine-87. Biochemistry 35:4591–4601CrossRefGoogle Scholar
  32. 32.
    Scott DL, Sigler PB (1994) Structure and catalytic mechanism of secretory phospholipases A2. Adv Protein Chem 45:53–88CrossRefGoogle Scholar
  33. 33.
    Genest M, Ptak M (1982) Interactions between Asp, His, Ser residues within models of the active site of serine proteases: A theoretical empirical study. Int J Pept Protein Res 19:420–431CrossRefGoogle Scholar
  34. 34.
    Winget JM, Pan YH, Bahnson BJ (2006) The interfacial binding surface of phospholipase A2s. Biochem Biophys Acta 1761:1260–1269Google Scholar
  35. 35.
    Ghomashchi F, Lin Y, Hixon MS, Yu B-Z, Annand R et al (1998) Interfacial recognition by bee venom phospholipase A2: Insights into nonelectrostatic molecular determinants by charge reversal mutagenesis. Biochemistry 37:6697–6710CrossRefGoogle Scholar
  36. 36.
    Sumandea M, Das S, Sumandea C, Cho W (1999) Roles of aromatic residues in high interfacial activity of Naja naja atra phospholipase A2. Biochemistry 38:162900–162907CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Gururao Hariprasad
    • 1
    Email author
  • Punit Kaur
    • 1
  • Alagiri Srinivasan
    • 1
  • Tej Pal Singh
    • 1
  • Manoj Kumar
    • 1
  1. 1.Department of BiophysicsAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations