Advertisement

Journal of Molecular Modeling

, Volume 18, Issue 6, pp 2553–2566 | Cite as

Hit clustering can improve virtual fragment screening: CDK2 and PARP1 case studies

  • Alexey A. Zeifman
  • Victor S. Stroylov
  • Fedor N. Novikov
  • Oleg V. Stroganov
  • Alexandra L. Zakharenko
  • Svetlana N. Khodyreva
  • Olga I. Lavrik
  • Ghermes G. Chilov
Original Paper

Abstract

Virtual fragment screening could be a promising alternative to existing experimental screening techniques. However, reliable methods of in silico fragment screening are yet to be established and validated. In order to develop such an approach we first checked how successful the existing molecular docking methods can be in predicting fragment binding affinities and poses. Using our Lead Finder docking software the RMSD of the binding energy prediction was observed to be 1.35 kcal/mol−1 on a set of 26 experimentally characterized fragment inhibitors, and the RMSD of the predicted binding pose from the experimental one was <1.5 Å. Then, we explored docking of 68 fragments obtained from 39 drug molecules for which co-crystal structures were available from the PDB. It appeared that fragments that participate in oriented non-covalent interactions, such as hydrogen bonds and metal coordination, could be correctly docked in 70-80% of cases suggesting the potential success of rediscovering of corresponding drugs by in silico fragment approach. Based on these findings we’ve developed a virtual fragment screening technique which involved structural filtration of protein-ligand complexes for specific interactions and subsequent clustering in order to minimize the number of preferable starting fragment candidates. Application of this method led to 2 millimolar-scale fragment PARP1 inhibitors with a new scaffold.

Keywords

CDK2 FBDD Molecular docking PARP1 Virtual screening 

Notes

Acknowledgments

We thank Sukhanova M. V. for PARP1 isolation and Val Kulkov (BioMolTech Corp) for revising the manuscript.

Supplementary material

894_2011_1280_MOESM1_ESM.doc (556 kb)
Supporting information (DOC 556 kb)

References

  1. 1.
    Sams-Dodd F (2005) Target-based drug discovery: next term is something wrong? Drug Disc Today 10:139–147CrossRefGoogle Scholar
  2. 2.
    Chessari G, Woodhead AJ (2009) From fragment to clinical candidate: a historical perspective. Drug Discov Today 14:668–675CrossRefGoogle Scholar
  3. 3.
    Hubbard RE (2008) Fragment approaches in structure-based drug discovery. J Synchrotron Radiat 15:227–230CrossRefGoogle Scholar
  4. 4.
    Warr WA (2009) Fragment-based drug discovery. J Computer-Aided Mod Des 23:453–458CrossRefGoogle Scholar
  5. 5.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev 32:3–25CrossRefGoogle Scholar
  6. 6.
    Hajduk PJ, Greer JA (2007) Decade of fragment-based drug design: strategic advances and lessons learned. Nat Rew Drug Disc 6(3):211–219CrossRefGoogle Scholar
  7. 7.
    Huber W (2005) A new strategy for improved secondary screening and lead optimization using high-resolution SPR characterization of compound-target interaction. J Mol Recognition 18:273–281CrossRefGoogle Scholar
  8. 8.
    Hartshorn MJ, Murray CW, Cleasby A, Frederickson M, Tickle IJ, Jhoti H (2005) Fragment-based lead discovery using X-ray crystallography. J Med Chem 48:403–413CrossRefGoogle Scholar
  9. 9.
    Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering High-Affinity Ligands for Proteins: SAR by NMR. Science 274:1531–1534CrossRefGoogle Scholar
  10. 10.
    Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘Rule of Three’ for fragment-based drug discovery? Drug Discov Today 8:876–877CrossRefGoogle Scholar
  11. 11.
    Warren GL et al (2006) A Critical Assessment of Docking Programs and Scoring Functions. J Med Chem 49:5912–5931CrossRefGoogle Scholar
  12. 12.
    Wyatt PG, Woodhead AJ, Berdini V, Boulstridge JA, Carr MG, Cross DM, Davis DJ, Devine LA, Early TR, Feltell RE et al (2008) Identification of N-(4-piperidinyl)-4-(2, 6-dichlorobenzoylamino)- 1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based Xray crystallography and structure based drug design. J Med Chem 51:4986–4999CrossRefGoogle Scholar
  13. 13.
    Lapenna S, Giordano A (2009) Cell cycle kinases as therapeutic agents for cancer. Nature Reviews Drug Discovery 8:547–566 http://www.clinicaltrials.gov/ct2/show/NCT00540358 Google Scholar
  14. 14.
    NIH (2011) A Phase 2 Trial of Standard Chemotherapy, With or Without BSI-201, in Patients With Triple Negative Metastatic Breast Cancer. http://www.clinicaltrials.gov/ct2/show/NCT00679783
  15. 15.
    NIH (2011) Phase II Study of AZD2281 in Patients With Known BRCA Mutation Status or Recurrent High Grade Ovarian Cancer or Patients With Known BRCA Mutation Status/ Triple Neg Breast CancerGoogle Scholar
  16. 16.
  17. 17.
    Advanced Chemistry Development (2011) http://acdlabs.com/home
  18. 18.
    Vitas-M Laboratory Ltd. http://vitasmlab.com
  19. 19.
    Noel M, O’Boyle CM, Geoffrey RH (2008) Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit. Chem Central J 2:5CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Stroganov OV, Novikov FN, Stroylov VS, Kulkov V, Chilov GG (2008) Lead Finder: An Approach To Improve Accuracy of Protein-Ligand Docking, Binding Energy Estimation, and Virtual Screening. J Chem Inf Model 48:2371–2385CrossRefGoogle Scholar
  22. 22.
    Abad-Zapatero C, Metz JT (2005) Ligand efficiency indices as guideposts for drug discovery. Drug Discov Today 10:464–469CrossRefGoogle Scholar
  23. 23.
    Humphrey W, Dalke A, Schulten K (1996) VMD - Visual Molecular Dynamics J Mol Graph 14:33–38. http://www.ks.uiuc.edu/Research/vmd
  24. 24.
  25. 25.
    Sukhanova MV, Khodyreva SN, Lavrik OI (2004) Poly(ADP-ribose) polymerase-1 inhibits strand-displacement synthesis of DNA catalyzed by DNA polymerase beta. Biochemistry (Mosc) 69:558–568CrossRefGoogle Scholar
  26. 26.
    Wen-Ting Z et al (2009) Design, Synthesis, and Cytoprotective Effect of 2-Aminothiazole Analogues as Potent Poly(ADP-Ribose) Polymerase-1 Inhibitors. J Med Chem 52:718–725CrossRefGoogle Scholar
  27. 27.
    Novikov FN, Stroylov VS, Stroganov OV, Chilov GG (2009) Improving performance of docking-based virtual screening by structural filtration. J Mol Model 16, published onlineGoogle Scholar
  28. 28.
    Pevarello P et al (2004) 3- Aminopyrazole Inhibitors of CDK2/Cyclin A as Antitumor Agents. 1. Lead Finding. J Med Chem 47:3367–3380CrossRefGoogle Scholar
  29. 29.
    Congreve MS, Davis DJ, Devine L, Granata C, OReilly M, Wyatt PG, Jhoti H (2003) Detection of Ligands from a Dynamic Combinatorial Library by X-ray Crystallography. Angew Chem Int Ed 42:4479–4482CrossRefGoogle Scholar
  30. 30.
    Aronov AM et al (2007) Flipped Out: Structure-Guided Design of Selective Pyrazolylpyrrole ERK Inhibitors. J Med Chem 50:1280–1287CrossRefGoogle Scholar
  31. 31.
    Gill AL et al (2005) Identification of Novel p38 MAP Kinase Inhibitors Using Fragment-Based Lead Generation. J Med Chem 48:414–426CrossRefGoogle Scholar
  32. 32.
    Howard S, Berdini V, Boulstridge JA, Carr MG, Cross DM, Curry J, Devine LA, Early TR, Fazal L, Gill AL et al (2009) Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity. J Med Chem 52:379–388CrossRefGoogle Scholar
  33. 33.
    Caldwell JJ et al (2008) Identification of 4-(4-aminopiperidin-1-yl)-7Hpyrrolo[ 2,3-d]pyrimidines as selective inhibitors of protein kinase B through fragment elaboration. J Med Chem 51:2147–2157CrossRefGoogle Scholar
  34. 34.
    Reader J et al (2008) Identification and structure-guided optimisation of novelinhibitors of checkpoint kinase 1 (Chk1) through combined biochemical and crystallographic screening. AACR Annual Meeting April 12–16, 2008, San Diego, CAGoogle Scholar
  35. 35.
    Hajduk PJ, Boyd S, Nettesheim D, Nienaber V, Severin J, Smith R, Davidson D, Rockway T, Fesik SW (2000) Identification of Novel Inhibitors of Urokinase via NMR-Based Screening. J Med Chem 43:3862–3866CrossRefGoogle Scholar
  36. 36.
    Wendt MD et al (2004) Identification of novel binding interactions in the development of potent, selective 2-naphthamidine inhibitors of urokinase: synthesis, structural analysis, and SAR of N-phenyl amide 6-substitution. J Med Chem 47:303–324CrossRefGoogle Scholar
  37. 37.
    Frederickson M et al (2008) Fragment-based discovery of mexiletine derivatives as orally bioavailable inhibitors of urokinase-type plasminogen activator. J Med Chem 51:183–186CrossRefGoogle Scholar
  38. 38.
    Hartshorn MJ, Murray CW, Cleasby A, Frederickson M, Tickle IJ, Jhoti H (2007) Fragment-Based Lead Discovery Using X-ray Crystallography. J Med Chem 48:403–413CrossRefGoogle Scholar
  39. 39.
    Agnelli G, Haas S, Ginsberg JS, Krueger KA, Dmitrienko A, Brandt JT (2007) A phase II study of the oral factor Xa inhibitor LY517717 for the prevention of venous thromboembolism after hip or knee replacement. J Thromb Haemost 5:746–753CrossRefGoogle Scholar
  40. 40.
    Artis DR et al (2009) Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent. Proc Natl Acad Sci USA 106:262–267CrossRefGoogle Scholar
  41. 41.
    Pang YP, Quiram P, Jelacic T, Hong F, Brimijoin S (1996) Highly potent, selective, and low cost bis-tetrahydroaminacrine inhibitors of acetylcholinesterase Steps toward novel drugs for treating Alzheimer’s disease. J Biol Chem 271:23646–23649CrossRefGoogle Scholar
  42. 42.
    Lewis WG, Green LG, Grynszpan F, Radi Z, Carlier PR, Taylor P, Finn MG, Sharpless KB (2002) Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem Int Edn Eng 41:1053–1057Google Scholar
  43. 43.
    Murray CW, Callaghan O, Chessari G, Cleasby A, Congreve M, Frederickson M, Hartshorn MJ, McMenamin R, Patel S, Wallis N (2007) Application of Fragment Screening by X-ray Crystallography to b-Secretase. J Med Chem 50:1116–1123CrossRefGoogle Scholar
  44. 44.
    Congreve M, Aharony D, Albert J, Callaghan O, Campbell J, Carr RA, Chessari G, Cowan S, Edwards PD, Frederickson M, McMenamin R, Murray CW, Patel S, Wallis N (2007) Application of Fragment Screening by X-ray Crystallography to the Discovery of Aminopyridines as Inhibitors of b –Secretase. J Med Chem 50:1124–1132CrossRefGoogle Scholar
  45. 45.
    Sanders WJ et al (2004) Discovery of Potent Inhibitors of Dihydroneopterin Aldolase using CrystaLEAD High-Throughput X-ray Crystallographic Screening and Structure-Directed Lead Optimization. J Med Chem 47:1709–1718CrossRefGoogle Scholar
  46. 46.
    Pei Z et al (2006) Discovery of ((4R,5S)-5-Amino-4-(2,4,5- trifluorophenyl)-cyclohex-1-enyl)-(3- (trifluoromethyl)-5,6-dihydro- [1, 2, 4]triazolo[4,3-a]pyrazin-7(8H)- yl)methanone (ABT-341), a Highly Potent, Selective, Orally Efficacious, and Safe Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes. J Med Chem 49:6439–6442CrossRefGoogle Scholar
  47. 47.
    Hochgürtel M, Kroth H, Piecha D, Hofmann MW, Nicolau C, Krause S, Schaaf O, Sonnenmoser G, Eliseev AV (2002) Target-induced formation of neuraminidase inhibitors from in vitro virtual combinatorial libraries. Proc Natl Acad Sci USA 99:3382–3387CrossRefGoogle Scholar
  48. 48.
    Rath VL, Ammirati M, Danley DE, Ekstrom JL, Gibbs EM, Hynes TR, Mathiowetz AM, McPherson RK, Olson TV, Treadway JL, Hoover DJ (2000) Human liver glycogen phosphorylase inhibitors bind at a new allosteric site. Chem Biol 7:677–682CrossRefGoogle Scholar
  49. 49.
    Card GL et al (2005) A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design. Nat Biotechnol 23:201–207CrossRefGoogle Scholar
  50. 50.
    Lesuisse D, Lange G, Deprez P, Bénard D, Schoot B, Delettre G, Marquette J-P, Broto P, Jean-Baptiste V, Bichet P, Sarubbi E, Mandine E (2002) SAR and X-ray. A new approach combining fragment-based screening and rational drug design: application to the discovery of nanomolar inhibitors of Src SH2. J Med Chem 45:2379–2387CrossRefGoogle Scholar
  51. 51.
    Lange G, Lesuisse D, Deprez P, Schoot B, Loenze P, Bénard D, Marquette JP, Broto P, Sarubbi E, Mandine E (2003) Requirements for specific binding of low affinity inhibitor fragments to the SH2 domain of (pp 60)Src are identical to those for high affinity binding to full length inhibitors. J Med Chem 46:5184–5195CrossRefGoogle Scholar
  52. 52.
    Burgess LE, Newhouse BJ, Ibrahim P, Rizzi J, Kashem MA, Hartman A, Brandhuber BJ, Wright CD, Thomson DS, Vigers GP, Koch K (1999) Potent and selective nonpeptidic inhibitors of human lung tryptase. Proc Natl Acad Sci USA 96:8348–8352CrossRefGoogle Scholar
  53. 53.
    Dymock BW et al (2005) Novel, potent small-molecule inhibitors of the molecular chaperone Hsp90 discovered through structure-based design. J Med Chem 48:4212–4215CrossRefGoogle Scholar
  54. 54.
    Huth JR et al (2007) Discovery and design of novel HSP90 inhibitors using multiple fragment-based design strategies. Chem Biol Drug Des 70:1–12CrossRefGoogle Scholar
  55. 55.
    Hohwy M et al (2008) Novel prostaglandin D synthase inhibitors generated by fragment-based drug design. J Med Chem 51:2178–2186CrossRefGoogle Scholar
  56. 56.
    Pevarello P et al (2005) 3-Aminopyrazole Inhibitors of CDK2/Cyclin A as Antitumor Agents. 2. Lead Optimization. J Med Chem 48:2944–2956CrossRefGoogle Scholar
  57. 57.
    Kim KS et al (2002) Discovery of Aminothiazole Inhibitors of Cyclin-Dependent Kinase 2: Synthesis, X-ray Crystallographic Analysis, and Biological Activities. J Med Chem 45:3905–3927CrossRefGoogle Scholar
  58. 58.
    The Binding Database. http://www.bindingdb.org
  59. 59.
    Green J, Arnost MJ, Pierce A (2003) Patent WO 2003011287 A1 2003Google Scholar
  60. 60.
    Hoelder S et al (2004) Pyridazinone derivatives as cdk2-inhibitors. Patent WO 2004046130Google Scholar
  61. 61.
    Ikuta M et al (2001) Crystallographic Approach to Identification of Cyclin-dependent Kinase 4 (CDK4)-specific Inhibitors by Using CDK4 Mimic CDK2 Protein. J Biol Chem 276:27548–27554CrossRefGoogle Scholar
  62. 62.
    James ET et al (2002) Photochemical preparation of a pyridone containing tetracycle: A jak protein kinase inhibitor. Bioorg Med Chem Let 12:1219–1223CrossRefGoogle Scholar
  63. 63.
    Congreve MS, Davis DJ, Devine L, Granata C, OReilly M, Wyatt PG, Jhoti H (2003) Detection of Ligands from a Dynamic Combinatorial Library by X-ray Crystallography. Angew Chem Int Edn 42:4479–4482CrossRefGoogle Scholar
  64. 64.
    Schlapbach A et al (2008) Pyrrolo-pyrimidones: A novel class of MK2 inhibitors with potent cellular activity. Bioorg Med Chem Let 18:6142–6146CrossRefGoogle Scholar
  65. 65.
    Furet P, Meyer T, Strauss A, Raccuglia S, Rondeau J-M (2002) Structure-based design and protein X-ray analysis of a protein kinase inhibitor. Bioorg Med Chem Let 12:221–224CrossRefGoogle Scholar
  66. 66.
    Griffin RJ, Srinivasan S, Bowman K, Calvert AH, Curtin NJ, Newell DR, Pemberton LC, Golding BT (1998) Resistance modifying agents. 5. Synthesis and biological properties of quinazolinone inhibitors of the DNA repair enzyme poly(ADPribose) polymerase (PARP). J Med Chem 41:5247–5256CrossRefGoogle Scholar
  67. 67.
    Banasik M, Komura H, Shimoyama M, Ueda K (1992) Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl) transferase. J Biol Chem 267:1569–1575Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Alexey A. Zeifman
    • 1
  • Victor S. Stroylov
    • 1
  • Fedor N. Novikov
    • 1
  • Oleg V. Stroganov
    • 1
  • Alexandra L. Zakharenko
    • 2
  • Svetlana N. Khodyreva
    • 2
  • Olga I. Lavrik
    • 2
  • Ghermes G. Chilov
    • 1
  1. 1.N. D. Zelinsky Institute Of Organic Chemistry (ZIOC RAS)MoscowRussia
  2. 2.Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations